The search functionality is under construction.

Keyword Search Result

[Keyword] local ternary pattern(2hit)

1-2hit
  • Locally Important Pattern Clustering Code for Pedestrian Classification

    Young Chul LIM  Minsung KANG  

     
    LETTER-Vision

      Vol:
    E98-A No:8
      Page(s):
    1875-1878

    In this letter, a local pattern coding scheme is proposed to reduce the dimensionality of feature vectors in the local ternary pattern. The proposed method encodes the ternary patterns into a binary pattern by clustering similar ternary patterns. The experimental results show that the proposed method outperforms the previous methods.

  • Face Recognition via Curvelets and Local Ternary Pattern-Based Features

    Lijian ZHOU  Wanquan LIU  Zhe-Ming LU  Tingyuan NIE  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:4
      Page(s):
    1004-1007

    In this Letter, a new face recognition approach based on curvelets and local ternary patterns (LTP) is proposed. First, we observe that the curvelet transform is a new anisotropic multi-resolution transform and can efficiently represent edge discontinuities in face images, and that the LTP operator is one of the best texture descriptors in terms of characterizing face image details. This motivated us to decompose the image using the curvelet transform, and extract the features in different frequency bands. As revealed by curvelet transform properties, the highest frequency band information represents the noisy information, so we directly drop it from feature selection. The lowest frequency band mainly contains coarse image information, and thus we deal with it more precisely to extract features as the face's details using LTP. The remaining frequency bands mainly represent edge information, and we normalize them for achieving explicit structure information. Then, all the extracted features are put together as the elementary feature set. With these features, we can reduce the features' dimension using PCA, and then use the sparse sensing technique for face recognition. Experiments on the Yale database, the extended Yale B database, and the CMU PIE database show the effectiveness of the proposed methods.