1-12hit |
We examine the feasibility of Deutsch-Jozsa Algorithm, a basic quantum algorithm, on a machine learning-based logistic regression problem. Its major property to distinguish the function type with an exponential speedup can help identify the feature unsuitability much more quickly. Although strict conditions and restrictions to abide exist, we reconfirm the quantum superiority in many aspects of modern computing.
Yizhou JIANG Sai HUANG Yixin ZHANG Zhiyong FENG Di ZHANG Celimuge WU
This letter proposes a novel modulation classification method for overlapped sources named LRGP involving multinomial logistic regression (MLR) and multi-gene genetic programming (MGGP). MGGP based feature engineering is conducted to transform the cumulants of the received signals into highly discriminative features and a MLR based classifier is trained to identify the combination of the modulation formats of the overlapped sources instead of signal separation. Extensive simulations demonstrate that LRGP yields superior performance compared with existing methods.
MohammadAmin LOTFOLAHI Cheng-Zen YANG I-Shyan HWANG AliAkbar NIKOUKAR Yu-Hua WU
Ethernet passive optical network (EPON) is one of the energy-efficient access networks. Many studies have been done to reach maximum energy saving in the EPON. However, it is a trade-off between achieving maximum energy saving and guaranteeing QoS. In this paper, a predictive doze mode mechanism in an enhanced EPON architecture is proposed to achieve energy saving by using a logistic regression (LR) model. The optical line terminal (OLT) in the EPON employs an enhanced Doze Manager practicing the LR model to predict the doze periods of the optical network units (ONUs). The doze periods are estimated more accurately based on the historical high-priority traffic information, and logistic regression DBA (LR-DBA) performs dynamic bandwidth allocation accordingly. The proposed LR-DBA mechanism is compared with a scheme without energy saving (IPACT) and another scheme with energy saving (GDBA). Simulation results show that LR-DBA effectively improves the power consumption of ONUs in most cases, and the improvement can be up to 45% while it guarantees the QoS metrics, such as the high-priority traffic delay and jitter.
Yoshinori AONO Takuya HAYASHI Le Trieu PHONG Lihua WANG
Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive or private data, cares are necessary. In this paper, we propose a secure system for privacy-protecting both the training and predicting data in logistic regression via homomorphic encryption. Perhaps surprisingly, despite the non-polynomial tasks of training and predicting in logistic regression, we show that only additively homomorphic encryption is needed to build our system. Indeed, we instantiate our system with Paillier, LWE-based, and ring-LWE-based encryption schemes, highlighting the merits and demerits of each instantiation. Besides examining the costs of computation and communication, we carefully test our system over real datasets to demonstrate its utility.
Kazuto FUKUCHI Toshihiro KAMISHIMA Jun SAKUMA
With recent developments in machine learning technology, the predictions by systems incorporating machine learning can now have a significant impact on the lives and activities of individuals. In some cases, predictions made by machine learning can result unexpectedly in unfair treatments to individuals. For example, if the results are highly dependent on personal attributes, such as gender or ethnicity, hiring decisions might be discriminatory. This paper investigates the neutralization of a probabilistic model with respect to another probabilistic model, referred to as a viewpoint. We present a novel definition of neutrality for probabilistic models, η-neutrality, and introduce a systematic method that uses the maximum likelihood estimation to enforce the neutrality of a prediction model. Our method can be applied to various machine learning algorithms, as demonstrated by η-neutral logistic regression and η-neutral linear regression.
Mitsuru SHIOZAKI Kousuke OGAWA Kota FURUHASHI Takahiko MURAYAMA Masaya YOSHIKAWA Takeshi FUJINO
In modern hardware security applications, silicon physical unclonable functions (PUFs) are of interest for their potential use as a unique identity or secret key that is generated from inherent characteristics caused by process variations. However, arbiter-based PUFs utilizing the relative delay-time difference between equivalent paths have a security issue in which the generated challenge-response pairs (CRPs) can be predicted by a machine learning attack. We previously proposed the RG-DTM PUF, in which a response is decided from divided time domains allocated to response 0 or 1, to improve the uniqueness of the conventional arbiter-PUF in a small circuit. However, its resistance against machine learning attacks has not yet been studied. In this paper, we evaluate the resistance against machine learning attacks by using a support vector machine (SVM) and logistic regression (LR) in both simulations and measurements and compare the RG-DTM PUF with the conventional arbiter-PUF and with the XOR arbiter-PUF, which strengthens the resistance by using XORing output from multiple arbiter-PUFs. In numerical simulations, prediction rates using both SVM and LR were above 90% within 1,000 training CRPs on the arbiter-PUF. The machine learning attack using the SVM could never predict responses on the XOR arbiter-PUF with over six arbiter-PUFs, whereas the prediction rate eventually reached 95% using the LR and many training CRPs. On the RG-DTM PUF, when the division number of the time domains was over eight, the prediction rates using the SVM were equal to the probability by guess. The machine learning attack using LR has the potential to predict responses, although an adversary would need to steal a significant amount of CRPs. However, the resistance can exponentially be strengthened with an increase in the division number, just like with the XOR arbiter-PUF. Over one million CRPs are required to attack the 16-divided RG-DTM PUF. Differences between the RG-DTM PUF and the XOR arbiter-PUF relate to the area penalty and the power penalty. Specifically, the XOR arbiter-PUF has to make up for resistance against machine learning attacks by increasing the circuit area, while the RG-DTM PUF is resistant against machine learning attacks with less area penalty and power penalty since only capacitors are added to the conventional arbiter-PUF. We also attacked RG-DTM PUF chips, which were fabricated with 0.18-µm CMOS technology, to evaluate the effect of physical variations and unstable responses. The resistance against machine learning attacks was related to the delay-time difference distribution, but unstable responses had little influence on the attack results.
Makoto YAMADA Masashi SUGIYAMA Gordon WICHERN Jaak SIMM
The least-squares probabilistic classifier (LSPC) is a computationally-efficient alternative to kernel logistic regression. However, to assure its learned probabilities to be non-negative, LSPC involves a post-processing step of rounding up negative parameters to zero, which can unexpectedly influence classification performance. In order to mitigate this problem, we propose a simple alternative scheme that directly rounds up the classifier's negative outputs, not negative parameters. Through extensive experiments including real-world image classification and audio tagging tasks, we demonstrate that the proposed modification significantly improves classification accuracy, while the computational advantage of the original LSPC remains unchanged.
Yan DENG Wei-Qiang ZHANG Yan-Min QIAN Jia LIU
One typical phonotactic system for language recognition is parallel phone recognition followed by vector space modeling (PPRVSM). In this system, various phone recognizers are applied in parallel and fused at the score level. Each phone recognizer is trained for a known language, which is assumed to extract complementary information for effective fusion. But this method is limited by the large amount of training samples for which word or phone level transcription is required. Also, score fusion is not the optimal method as fusion at the feature or model level will retain more information than at the score level. This paper presents a new strategy to build and fuse parallel phone recognizers (PPR). This is achieved by training multiple acoustic diversified phone recognizers and fusing at the feature level. The phone recognizers are trained on the same speech data but using different acoustic features and model training techniques. For the acoustic features, Mel-frequency cepstral coefficients (MFCC) and perceptual linear prediction (PLP) are both employed. In addition, a new time-frequency cepstrum (TFC) feature is proposed to extract complementary acoustic information. For the model training, we examine the use of the maximum likelihood and feature minimum phone error methods to train complementary acoustic models. In this study, we fuse phonotactic features of the acoustic diversified phone recognizers using a simple linear fusion method to build the PPRVSM system. A novel logistic regression optimized weighting (LROW) approach is introduced for fusion factor optimization. The experimental results show that fusion at the feature level is more effective than at the score level. And the proposed system is competitive with the traditional PPRVSM. Finally, the two systems are combined for further improvement. The best performing system reported in this paper achieves an equal error rate (EER) of 1.24%, 4.98% and 14.96% on the NIST 2007 LRE 30-second, 10-second and 3-second evaluation databases, respectively, for the closed-set test condition.
Ana Erika CAMARGO CRUZ Koichiro OCHIMIZU
Design-complexity metrics, while measured from the code, have shown to be good predictors of fault-prone object-oriented programs. Some of the most often used metrics are the Chidamber and Kemerer metrics (CK). This paper discusses how to make early predictions of fault-prone object-oriented classes, using a UML approximation of three CK metrics. First, we present a simple approach to approximate Weighted Methods per Class (WMC), Response For Class (RFC) and Coupling Between Objects (CBO) CK metrics using UML collaboration diagrams. Then, we study the application of two data normalization techniques. Such study has a twofold purpose: to decrease the error approximation in measuring the mentioned CK metrics from UML diagrams, and to obtain a more similar data distribution of these metrics among software projects so that better prediction results are obtained when using the same prediction model across different software projects. Finally, we construct three prediction models with the source code of a package of an open source software project (Mylyn from Eclipse), and we test them with several other packages and three different small size software projects, using their UML and code metrics for comparison. The results of our empirical study lead us to conclude that the proposed UML RFC and UML CBO metrics can predict fault-proneness of code almost with the same accuracy as their respective code metrics do. The elimination of outliers and the normalization procedure used were of great utility, not only for enabling our UML metrics to predict fault-proneness of code using a code-based prediction model but also for improving the prediction results of our models across different software packages and projects.
Kernel logistic regression (KLR) is a powerful and flexible classification algorithm, which possesses an ability to provide the confidence of class prediction. However, its training--typically carried out by (quasi-)Newton methods--is rather time-consuming. In this paper, we propose an alternative probabilistic classification algorithm called Least-Squares Probabilistic Classifier (LSPC). KLR models the class-posterior probability by the log-linear combination of kernel functions and its parameters are learned by (regularized) maximum likelihood. In contrast, LSPC employs the linear combination of kernel functions and its parameters are learned by regularized least-squares fitting of the true class-posterior probability. Thanks to this linear regularized least-squares formulation, the solution of LSPC can be computed analytically just by solving a regularized system of linear equations in a class-wise manner. Thus LSPC is computationally very efficient and numerically stable. Through experiments, we show that the computation time of LSPC is faster than that of KLR by two orders of magnitude, with comparable classification accuracy.
Takafumi KANAMORI Taiji SUZUKI Masashi SUGIYAMA
Density ratio estimation has gathered a great deal of attention recently since it can be used for various data processing tasks. In this paper, we consider three methods of density ratio estimation: (A) the numerator and denominator densities are separately estimated and then the ratio of the estimated densities is computed, (B) a logistic regression classifier discriminating denominator samples from numerator samples is learned and then the ratio of the posterior probabilities is computed, and (C) the density ratio function is directly modeled and learned by minimizing the empirical Kullback-Leibler divergence. We first prove that when the numerator and denominator densities are known to be members of the exponential family, (A) is better than (B) and (B) is better than (C). Then we show that once the model assumption is violated, (C) is better than (A) and (B). Thus in practical situations where no exact model is available, (C) would be the most promising approach to density ratio estimation.
A comparison of performances is made of three text-independent speaker identification methods based on dual Penalized Logistic Regression Machine (dPLRM), Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) with experiments by 10 male speakers. The methods are compared for the speech data which were collected over the period of 13 months in 6 utterance-sessions of which the earlier 3 sessions were for obtaining training data of 12 seconds' utterances. Comparisons are made with the Mel-frequency cepstrum (MFC) data versus the log-power spectrum data and also with training data in a single session versus in plural ones. It is shown that dPLRM with the log-power spectrum data is competitive with SVM and GMM methods with MFC data, when trained for the combined data collected in the earlier three sessions. dPLRM outperforms GMM method especially as the amount of training data becomes smaller. Some of these findings have been already reported in [1]-[3].