The search functionality is under construction.

Keyword Search Result

[Keyword] low-light image enhancement(3hit)

1-3hit
  • Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer

    Xin HU  Jinhua WANG  Sunhan XU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/10/05
      Vol:
    E107-D No:1
      Page(s):
    157-160

    Images captured in low-light environments have low visibility and high noise, which will seriously affect subsequent visual tasks such as target detection and face recognition. Therefore, low-light image enhancement is of great significance in obtaining high-quality images and is a challenging problem in computer vision tasks. A low-light enhancement model, LLFormer, based on the Vision Transformer, uses axis-based multi-head self-attention and a cross-layer attention fusion mechanism to reduce the complexity and achieve feature extraction. This algorithm can enhance images well. However, the calculation of the attention mechanism is complex and the number of parameters is large, which limits the application of the model in practice. In response to this problem, a lightweight module, PoolFormer, is used to replace the attention module with spatial pooling, which can increase the parallelism of the network and greatly reduce the number of model parameters. To suppress image noise and improve visual effects, a new loss function is constructed for model optimization. The experiment results show that the proposed method not only reduces the number of parameters by 49%, but also performs better in terms of image detail restoration and noise suppression compared with the baseline model. On the LOL dataset, the PSNR and SSIM were 24.098dB and 0.8575 respectively. On the MIT-Adobe FiveK dataset, the PSNR and SSIM were 27.060dB and 0.9490. The evaluation results on the two datasets are better than the current mainstream low-light enhancement algorithms.

  • Low-Light Image Enhancement Method Using a Modified Gamma Transform and Gamma Filtering-Based Histogram Specification for Convex Combination Coefficients

    Mashiho MUKAIDA  Yoshiaki UEDA  Noriaki SUETAKE  

     
    PAPER-Image

      Pubricized:
    2023/04/21
      Vol:
    E106-A No:11
      Page(s):
    1385-1394

    Recently, a lot of low-light image enhancement methods have been proposed. However, these methods have some problems such as causing fine details lost in bright regions and/or unnatural color tones. In this paper, we propose a new low-light image enhancement method to cope with these problems. In the proposed method, a pixel is represented by a convex combination of white, black, and pure color. Then, an equi-hue plane in RGB color space is represented as a triangle whose vertices correspond to white, black, and pure color. The visibility of low-light image is improved by applying a modified gamma transform to the combination coefficients on an equi-hue plane in RGB color space. The contrast of the image is enhanced by the histogram specification method using the histogram smoothed by a filter with a kernel determined based on a gamma distribution. In the experiments, the effectiveness of the proposed method is verified by the comparison with the state-of-the-art low-light image enhancement methods.

  • An Improved Method of LIME for a Low-Light Image Containing Bright Regions

    Seiichi KOJIMA  Noriaki SUETAKE  

     
    LETTER-Image

      Pubricized:
    2021/02/17
      Vol:
    E104-A No:8
      Page(s):
    1088-1092

    LIME is a method for low-light image enhancement. Though LIME significantly enhances the contrast in dark regions, the effect of contrast enhancement tends to be insufficient in bright regions. In this letter, we propose an improved method of LIME. In the proposed method, the contrast in bright regions are improved while maintaining the contrast enhancement effect in dark regions.