The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] mask-wearing detection(1hit)

1-1hit
  • Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv7-Tiny Open Access

    Min GAO  Gaohua CHEN  Jiaxin GU  Chunmei ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/03/19
      Vol:
    E107-D No:7
      Page(s):
    878-889

    Wearing a mask correctly is an effective method to prevent respiratory infectious diseases. Correct mask use is a reliable approach for preventing contagious respiratory infections. However, when dealing with mask-wearing in some complex settings, the detection accuracy still needs to be enhanced. The technique for mask-wearing detection based on YOLOv7-Tiny is enhanced in this research. Distribution Shifting Convolutions (DSConv) based on YOLOv7-tiny are used instead of the 3×3 convolution in the original model to simplify computation and increase detection precision. To decrease the loss of coordinate regression and enhance the detection performance, we adopt the loss function Intersection over Union with Minimum Points Distance (MPDIoU) instead of Complete Intersection over Union (CIoU) in the original model. The model is introduced with the GSConv and VoVGSCSP modules, recognizing the model’s mobility. The P6 detection layer has been designed to increase detection precision for tiny targets in challenging environments and decrease missed and false positive detection rates. The robustness of the model is increased further by creating and marking a mask-wearing data set in a multi environment that uses Mixup and Mosaic technologies for data augmentation. The efficiency of the model is validated in this research using comparison and ablation experiments on the mask dataset. The results demonstrate that when compared to YOLOv7-tiny, the precision of the enhanced detection algorithm is improved by 5.4%, Recall by 1.8%, mAP@.5 by 3%, mAP@.5:.95 by 1.7%, while the FLOPs is decreased by 8.5G. Therefore, the improved detection algorithm realizes more real-time and accurate mask-wearing detection tasks.