The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] media access protocol(2hit)

1-2hit
  • Hybrid Scheduling for Unicast and Multicast Traffic in Broadcast WDM Networks

    Wen-Yu TSENG  Sy-Yen KUO  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2355-2363

    Session length and group size are two most significant factors in achieving efficient scheduling for unicast and multicast traffic in single-hop wavelength division multiplexing (WDM) local area networks (LANs). This paper presents a hybrid protocol to schedule both unicast and multicast traffic in broadcast WDM networks. The protocol makes an important assumption that unicast traffic is the major portion of the overall traffic and is usually scheduled with a pre-allocation-based protocol. On the other hand, multicast traffic is a smaller portion of the overall traffic with multicast sessions and multicast groups, and is scheduled with a reservation-based protocol. The concept of multicast threshold, a function of random variables including the multicast session length and the multicast group size, is also proposed to partition the multicast traffic into two types. If the transmission threshold of a multicast request is larger than the multicast threshold, the request is handled with a reservation-based protocol. Otherwise, the multicast request is handled similar to unicast traffic; that is, each packet in the multicast session is replicated and sent to the unicast queues of destinations. The results show that the hybrid protocol can achieve better channel utilization efficiency and packet delay for unicast traffic under the multicast scenarios with moderate session length and group size. However, separate scheduling or broadcasting will be more suitable for a multicast scenario with very large session length and group size, which is not common on most realistic networks.

  • Simulation Study of Delay Problems on Star-Coupled WDM Photonic Network

    Jae-Soo KIM  

     
    PAPER-Optical Communication

      Vol:
    E78-B No:12
      Page(s):
    1646-1656

    This paper investigates the problems which inhibits the use of today's WDM networks. These are propagation delay, packet processing overhead, bit & frame synchronization, and tuning latency. So far, these problems, especially propagation delay, have been ignored in most performance analysis papers. They have always hindered network designers, but they are magnified by the order of magnitude increase in speed of optical communications systems as compared to previous media. This paper examines the impact of the propagation delay on the performance of WDM protocols with variations in the number of channels, packet length and system size, specifically in two reservation based protocols with control channels and two pre-allocation protocols without the control channels. Also the impact of three delay factors (packet processing overhead, bit & frame synchronization and tuning latency) are studied with different propagation delay parameters. In reservation protocols, each node has one agile transmitter and two receivers; one of them is fixed and the other one is agile. The fixed receiver continuously monitors the control channel, receives all control packets, and updates their own status tables in order to track the availability of the other nodes as a target and data channels to avoid the destination collisions and the data channel collisions, respectively. In pre-allocation protocols, each node has a tunable transmitter, a fixed or slow tunable receiver, and its own home channel to receive the packets. The performance of this protocol is evaluated through the discrete-event simulation in terms of the average packet delay and network throughput.