The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] medium noise(2hit)

1-2hit
  • Skew Angle Effects on Disk Recording Performance at High Recording Densities

    Dan WEI  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1171-1175

    Skew angle effects on the transition noise are analyzed in the longitudinal disk media by micromagnetic simulations at area densities from 14.3 Gb/in2 to 31.5 Gb/in2. The transition noise, including the peak, width and jitter noise, is the dominant noise in ultra-high density disk recording systems. An isotropic medium and an oriented medium, with a fixed grain size of 135 and a coercivity of 2900 Oe, are chosen for the noise analysis. The peak noise is studied by the distribution of the peak magnetization amplitude Mp in each bit. The transition a-parameter is no longer the value as given in the William-Comstock approximation. It is found that the transition noise is highly dependent on both the linear den sity and the skew angle, where the bit length and the grain size are on the same order. In both media, the medium noise increases severely when the skew angle is above 10 degrees.

  • Medium Noise in Longitudinal Thin Film Disk Media above 20 Gb/in2

    Dan WEI  Chong Kim ONG  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1494-1499

    Medium noise is the dominant noise in ultrahigh density disk recording systems. The peak, width and jitter noise are analyzed by micromagnetic simulations. Four different media, with a fixed grain size of 135 and a coercivity of 2900 Oe, are chosen for medium noise analysis. The linear recording density is increased from 340 KFCI (Kilo flux-changes per inch) to 750 KFCI, while the area density goes up from 14.3 Gb/in2 to 31.5 Gb/in2. The peak-amplitude noise is studied by the distribution of the peak magnetization Mp in each bit. The distribution of Mp develops from a delta-function around the remanence Mr at low densities to a flat distribution at extremely high densities. It is found that the transition a-parameter is no longer proportional to the square root of Mrδ, as given in the William-Comstock approximation. The peak-jitter noise in the read back voltage is analyzed by the percentage of the transition jitter in a bit length.