The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] minimax(11hit)

1-11hit
  • Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields

    Tatsuya KOYAKUMARU  Masahiro YUKAWA  Eduardo PAVEZ  Antonio ORTEGA  

     
    PAPER-Graphs and Networks

      Pubricized:
    2022/07/01
      Vol:
    E106-A No:1
      Page(s):
    23-34

    This paper presents a convex-analytic framework to learn sparse graphs from data. While our problem formulation is inspired by an extension of the graphical lasso using the so-called combinatorial graph Laplacian framework, a key difference is the use of a nonconvex alternative to the l1 norm to attain graphs with better interpretability. Specifically, we use the weakly-convex minimax concave penalty (the difference between the l1 norm and the Huber function) which is known to yield sparse solutions with lower estimation bias than l1 for regression problems. In our framework, the graph Laplacian is replaced in the optimization by a linear transform of the vector corresponding to its upper triangular part. Via a reformulation relying on Moreau's decomposition, we show that overall convexity is guaranteed by introducing a quadratic function to our cost function. The problem can be solved efficiently by the primal-dual splitting method, of which the admissible conditions for provable convergence are presented. Numerical examples show that the proposed method significantly outperforms the existing graph learning methods with reasonable computation time.

  • Minimax Design of Sparse IIR Filters Using Sparse Linear Programming Open Access

    Masayoshi NAKAMOTO  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/02/15
      Vol:
    E104-A No:8
      Page(s):
    1006-1018

    Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.

  • Signal-Dependent Analog-to-Digital Conversion Based on MINIMAX Sampling

    Igors HOMJAKOVS  Masanori HASHIMOTO  Tetsuya HIROSE  Takao ONOYE  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    459-468

    This paper presents an architecture of signal-dependent analog-to-digital converter (ADC) based on MINIMAX sampling scheme that allows achieving high data compression rate and power reduction. The proposed architecture consists of a conventional synchronous ADC, a timer and a peak detector. AD conversion is carried out only when input signal peaks are detected. To improve the accuracy of signal reconstruction, MINIMAX sampling is improved so that multiple points are captured for each peak, and its effectiveness is experimentally confirmed. In addition, power reduction, which is the primary advantage of the proposed signal-dependent ADC, is analytically discussed and then validated with circuit simulations.

  • Minimax Mean-Squared Error Location Estimation Using TOA Measurements

    Chih-Chang SHEN  Ann-Chen CHANG  

     
    LETTER-Sensing

      Vol:
    E93-B No:8
      Page(s):
    2223-2225

    This letter deals with mobile location estimation based on a minimax mean-squared error (MSE) algorithm using time-of-arrival (TOA) measurements for mitigating the nonline-of-sight (NLOS) effects in cellular systems. Simulation results are provided for illustrating the minimax MSE estimator yields good performance than the other least squares and weighted least squares estimators under relatively low signal-to-noise ratio and moderately NLOS conditions.

  • Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions

    Chirawat KOTCHASARN  Poompat SAENGUDOMLERT  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    1970-1979

    We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.

  • Multiobjective Evolutionary Approach to the Design of Optimal Controllers for Interval Plants via Parallel Computation

    Chen-Chien James HSU  Chih-Yung YU  Shih-Chi CHANG  

     
    PAPER-Systems and Control

      Vol:
    E89-A No:9
      Page(s):
    2363-2373

    Design of optimal controllers satisfying performance criteria of minimum tracking error and disturbance level for an interval system using a multi-objective evolutionary approach is proposed in this paper. Based on a worst-case design philosophy, the design problem is formulated as a minimax optimization problem, subsequently solved by a proposed two-phase multi-objective genetic algorithm (MOGA). By using two sets of interactive genetic algorithms where the first one determines the maximum (worst-case) cost function values for a given set of controller parameters while the other one minimizes the maximum cost function values passed from the first genetic algorithm, the proposed approach evolutionarily derives the optimal controllers for the interval system. To suitably assess chromosomes for their fitness in a population, root locations of the 32 generalized Kharitonov polynomials will be used to establish a constraints handling mechanism, based on which a fitness function can be constructed for effective evaluation of the chromosomes. Because of the time-consuming process that genetic algorithms generally exhibit, particularly the problem nature of minimax optimization, a parallel computation scheme for the evolutionary approach in the MATLAB-based working environment is also proposed to accelerate the design process.

  • Optimal Design of Complex Two-Channel IIR QMF Banks with Equiripple Response

    Ju-Hong LEE  Yuan-Hau YANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2143-2153

    The optimal design of complex infinite impulse response (IIR) two-channel quadrature mirror filter (QMF) banks with equiripple frequency response is considered. The design problem is appropriately formulated to result in a simple optimization problem. Therefore, based on a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the complex coefficients for the IIR QMFs. The effectiveness of the proposed technique is to form an appropriate Chebyshev approximation of a desired response and then find its solution from a linear subspace in several iterations. Finally, simulation results are presented for illustration and comparison.

  • Vector Quantization Codebook Design Using the Law-of-the-Jungle Algorithm

    Hiroyuki TAKIZAWA  Taira NAKAJIMA  Kentaro SANO  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:6
      Page(s):
    1068-1077

    The equidistortion principle[1] has recently been proposed as a basic principle for design of an optimal vector quantization (VQ) codebook. The equidistortion principle adjusts all codebook vectors such that they have the same contribution to quantization error. This paper introduces a novel VQ codebook design algorithm based on the equidistortion principle. The proposed algorithm is a variant of the law-of-the-jungle algorithm (LOJ), which duplicates useful codebook vectors and removes useless vectors. Due to the LOJ mechanism, the proposed algorithm can establish the equidistortion condition without wasting learning steps. This is significantly effective in preventing performance degradation caused when initial states of codebook vectors are improper to find an optimal codebook. Therefore, even in the case of improper initialization, the proposed algorithm can achieve minimization of quantization error based on the equidistortion principle. Performance of the proposed algorithm is discussed through experimental results.

  • Minimax Design of Two-Dimensional FIR Linear-Phase Quincunx Filter Banks Satisfying Perfect Reconstruction

    Her-Chang CHAO  Bin-Chang CHIEU  Shih-Jen YANG  Ju-Hong LEE  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:11
      Page(s):
    2370-2382

    In this paper, we present a numerical design method for two-dimensional (2-D) FIR linear-phase (LP) quincunx filter banks (QFB) with equiripple magnitude response and perfect reconstruction (PR). The necessary conditions for the filter length of analysis filters are derived. A dual affine scaling variant (DASV) of Karmarkar's algorithm is employed to minimize the peak ripples of analysis filters and an approximation scheme is introduced to satisfy the PR constraint for the 2-D filter banks (FB). The simulation examples are included to show the effectiveness of this proposed design technique.

  • Some Notes on Universal Noiseless Coding

    Joe SUZUKI  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E78-A No:12
      Page(s):
    1840-1847

    This paper presents some tighter bounds on universal noiseless coding, in particular, the lowerbound tighter than Davisson et al.'s for finite sequence and the upperbound for some typical universal data compression. We find that Davisson et al.'s bound satisfies some optimization in the case of using the Jeffreys prior and also that the derived upperbound in this paper is within O(1/n) from the Clarke and Barron asymptotics in the case of some restricted typical universal data compression defined in the paper.

  • A Universal Coding Scheme Based on Minimizing Minimax Redundancy for Sources with an Unknown Model

    Joe SUZUKI  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:7
      Page(s):
    1234-1239

    This paper's main objective is to clearly describe the construction of a universal code for minimizing Davisson's minimax redundancy in a range where the true model and stochastic parameters are unknown. Minimax redundancy is defined as the maximum difference between the expected persymbol code length and the per-symbol source entropy in the source range. A universal coding scheme is here formulated in terms of the weight function, i.e., a method is presented for determining a weight function which minimizes the minimax redundancy even when the true model is unknown. It is subsequently shown that the minimax redundancy achieved through the presented coding method is upper-bounded by the minimax redundancy of Rissanen's semi-predictive coding method.