1-4hit |
Ippei AOKI Koji YAMAMOTO Hidekazu MURATA Susumu YOSHIDA
In existing systems of mobile routers, the frequency band is shared in uplinks from wireless terminals to mobile routers, and carrier sense multiple access with collision avoidance (CSMA/CA) is generally used as the medium access control protocol. To use the frequency band effectively, adaptive control is one promising approach. In this paper, a decentralized access control protocol in which mobile routers adaptively select the minimum contention window size is proposed. However, because of their mobility, which is one of the main difference between mobile routers and fixed access points, individual local area networks (LANs) consisting of the mobile routers and wireless terminals randomly interact with each other, and such random interactions can cause instability. To analyze the stability of the proposed control, evolutionary game theory is introduced because a system with random interactions between numerous decision-making entities can be analyzed by using evolutionary game theory. Using evolutionary game theory, the condition for existence of a convergence point is obtained. In addition, to implement the decentralized access control, a learning rule is proposed. In the proposed learning rule, each mobile router selects a strategy based on the result of past trials. From the simulation result, it is confirmed that the decentralized access control converges to a point closed to the stable state derived through evolutionary game theory.
Ved P. KAFLE Eiji KAMIOKA Shigeki YAMADA
To support multimedia applications effectively in mobile networks, the handover latency or packet losses during handover should be very small. Addressing this issue, we present a cooperative mobile router-based handover (CoMoRoHo) scheme for long-vehicular multihomed mobile networks. The basic idea behind CoMoRoHo is to enable different mobile routers to access different subnets during a handover and cooperatively receive packets destined for each other. In general, packet losses are directly proportional to handover latency; however, the overlapped reception of packets from different subnets makes possible to minimize packet losses even without reducing handover latency. To evaluate the scheme, we carried out performance modeling of the CoMoRoHo scheme in comparison with the Fast Handover for Mobile IPv6 (FMIPv6) protocol in regard to the handover latency, packet loss, signaling overhead, and packet delivery overhead in access networks. The analysis results show that CoMoRoHo outperforms FMIPv6 by reducing the packet losses as well as signaling overheads by more than 50%. Moreover, CoMoRoHo imposes lower packet delivery overheads required for preventing packets from being dropped from access routers. We thus conclude that CoMoRoHo is a scalable scheme because its performance remains intact even when the access network is overloaded.
Ved P. KAFLE Eiji KAMIOKA Shigeki YAMADA
The IETF (Internet Engineering Task Force) has developed a Network Mobility (NEMO) basic support protocol by extending the operation of Mobile IPv6 to provide uninterrupted Internet connectivity to the communicating nodes of mobile networks. The protocol uses a mobile router (MR) in the mobile network to perform prefix scope binding updates with its home agent (HA) to establish a bi-directional tunnel between the HA and MR. This solution reduces location-update signaling by making network movements transparent to the mobile nodes behind the MR. However, delays in data delivery and higher overheads are likely to occur because of sub-optimal routing and multiple encapsulation of data packets. To resolve these problems, we propose a mobile router-assisted route optimization (MoRaRo) scheme for NEMO support. With MoRaRo, a mobile node performs route optimization with a correspondent node only once, at the beginning of a session. After that the MR performs route optimization on behalf of all active mobile nodes when the network moves. The virtue of this scheme is that it requires only slight modification of the implementation of the NEMO basic support protocol at local entities such as the MR and mobile nodes of the mobile network, leaving entities in the core or in other administrative domains untouched. MoRaRo enables a correspondent node to forward packets directly to the mobile network without any tunneling, thus reducing packet delay and encapsulation overheads in the core network. To enable the scheme to be evaluated, we present the results of both theoretical analysis and simulation.
Eun Kyoung PAIK Hosik CHO Thierry ERNST Yanghee CHOI
Various demands for next generation networks can be condensed into always-best-connected, ubiquitous, mobile, all-IP, application-aware, and converged networks. Vehicles have also come to be ubiquitous computing platforms associated with mobile communication functions. IPv6 has been introduced for all-IP ubiquitous communications. This paper proposes application-aware resource management for in-vehicle IPv6 networks, which are adaptive to different hardware configurations. We focus on power and bandwidth, since their management is critical for mobile communications. To manage these two critical resources, we identify the mobility characteristics and hardware configurations of in-vehicle networks. Based on these characteristics, we propose vehicle-aware power saving schemes. Our main idea for power saving is to dynamically adjust the mobile router (MR) advertisement interval and binding update lifetime. In addition, depending on the hardware configuration of the wireless environment, we propose two adaptive bandwidth management schemes using multihoming, which we refer to as best-connected MR selection based on location and high-data-rate MR selection based on priority. We evaluate the performance of our bandwidth management schemes by performing simulations, and that of our power saving schemes by mathematical analysis. Based on the results, it was found that the performance of each software scheme depends on the hardware configuration, so that an application-aware adaptive scheme is needed to optimize resource consumption.