The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] modes of operation(3hit)

1-3hit
  • On the Correctness of Security Proofs for the 3GPP Confidentiality and Integrity Algorithms

    Tetsu IWATA  Kaoru KUROSAWA  

     
    LETTER

      Vol:
    E87-A No:5
      Page(s):
    1110-1118

    f 8 and f 9 are standardized by 3GPP to provide confidentiality and integrity, respectively. It was claimed that f 8 and f 9 are secure if the underlying block cipher is a PseudoRandom Permutation (PRP), where f 9 is a slightly modified version of f 9. In this paper, however, we disprove both claims by showing a counterexample. We first construct a PRP F with the following property: There is a non-zero constant Cst such that for any key K, FK()=(). We then show that f 8 and f 9 are completely insecure if F is used as the underlying block cipher. Therefore, PRP assumption does not necessarily imply the security of f 8 and f 9, and it is impossible to prove their security under PRP assumption. It should be stressed that these results do not imply the original f 8 and f 9 (with KASUMI as the underlying block cipher) are insecure, or broken. They simply undermine their provable security.

  • Integrity-Aware Mode of Stream Cipher

    Soichi FURUYA  Dai WATANABE  Yoichi SETO  Kazuo TAKARAGI  

     
    PAPER

      Vol:
    E85-A No:1
      Page(s):
    58-65

    In many cryptographic protocols, a common-key encryption is used to provide a secure data-transmission channel. More precisely, the general idea of protocols is to have an encryption provide data authenticity as well as data confidentiality. In fact, there are known to be quite a few ways to provide both forms of security, however none of them are optimized enough to be efficient. We present a new encryption mode that uses a random number generator (RNG). Assuming the security of the RNG, we can prove not only perfect secrecy, but also message authentication. The proven probability of a successful forgery is (n-1)/(2b-1), where b is the number of bits in a block and n is the number of ciphertext blocks. The proposed scheme achieves very high practicality due to the potential advantages in efficiency. When we use a computationally secure RNG, such as instance a pseudorandom number generator PRNG, we have advantages in efficiency; in addition to the PRNG parallel computation, the scheme requires only a single-path process on the data stream so that even a limited hardware resource can operate an encryption of a very long data stream. We demonstrate the practicality of our scheme, by showing a realistic parameter set and the evaluations of its performance.

  • Safety Integrity Levels Model for IEC 61508 -- Examination of Modes of Operation --

    Eiichi KATO  Yoshinobu SATO  

     
    LETTER

      Vol:
    E83-A No:5
      Page(s):
    863-865

    The present paper modifies the algorithm to estimate harmful event frequencies and examines the definition of modes of operation in IEC 61508. As far as the continuous mode concerns, the calculated results coincide with those obtained based on the standard. However, for the intermediate region of medium demand frequencies and/or medium demand durations, the standard gives much higher harmful event frequencies than the real values. In order to avoid this difficulty, a new definition of modes of operation and a shortcut method for allocation of SILs are presented.