The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multi-path fading(6hit)

1-6hit
  • Sum-Rate Analysis for Centralized and Distributed Antenna Systems with Spatial Correlation and Inter-Cell Interference

    Ou ZHAO  Hidekazu MURATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    449-455

    In order to verify the channel sum-rate improvement by multi-user multiple-input multiple-output (MU-MIMO) transmission in distributed antenna systems (DASs), we investigate and compare the characteristics of channel sum-rates in both centralized antenna systems (CASs) and DASs under the effects of path loss, spatially correlated shadowing, correlated multi-path fading, and inter-cell interference. In this paper, we introduce two different types of functions to model the shadowing, auto-correlation and cross-correlation, and a typical exponential decay function to model the multi-path fading correlation. Thus, we obtain the distribution of the channel sum-rate and investigate its characteristics. Computer simulation results indicate that DAS can improve the performance of the channel sum-rate compared to CAS, even in the case under consideration. However, this improvement decreases as interference power increases. Moreover, the decrease in the channel sum-rate due to the increase in the interference power becomes slow under the effect of shadowing correlation. In addition, some other analyses on the shadowing correlation that occurs on both the transmit and receiver sides are provided. These analysis results show that the average channel sum-rate in a DAS without inter-cell interference considerably decreases because of the shadowing correlation. In contrast, there appears to be no change in the CAS. Furthermore, there are two different types of sum-rate changes in a DAS because of the difference in shadowing auto-correlation and cross-correlation.

  • Model Based Prediction of Uplink Multi-Path Fading Channel Response for Pre-Equalization in Mobile MC-CDMA Systems

    Gagik MKRTCHYAN  Katsuhiro NAITO  Kazuo MORI  Hideo KOBAYASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    446-458

    Multi-carrier code division multiple access (MC-CDMA) has been considered as one of the promising techniques for the next generation of mobile communication systems because of its efficient bandwidth usage, robustness to the multi-path fading and simple channel-sharing scheme. However, MC-CDMA cannot be employed in the uplink communication where the transmitted signal from each user propagates through the different multi-path fading channel, and the received signals are no longer orthogonal at the base station. As a result, bit error rate (BER) performance in the uplink MC-CDMA communication would be strongly degraded due to the occurrence of multi-user interference (MUI). To solve the MUI problem in the uplink MC-CDMA, the pre-equalization method was proposed in which the uplink signal is pre-equalized at the user terminal by using the channel response estimated from the downlink. Although the pre-equalization method is very effective for the stationary uplink channel with fixed users, it is hard to be employed in the time varying fading channel with mobile users, because there is a big difference in the channel responses between downlink and uplink. For the efficient MUI compensation, each user terminal would be required to predict the future channel conditions based on the current observation. This paper proposes a method for model based uplink channel response prediction by employing the spectral decomposition of the downlink channel impulse response. Computer simulation results show that the proposed method can achieve the accurate prediction of channel response for mobile users during the uplink transmission and allows the effective MUI compensation.

  • MLP/BP-Based Soft Decision Feedback Equalization with Bit-Interleaved TCM for Wireless Applications

    Terng-Ren HSU  Chien-Ching LIN  Terng-Yin HSU  Chen-Yi LEE  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E90-A No:4
      Page(s):
    879-884

    For more efficient data transmissions, a new MLP/BP-based channel equalizer is proposed to compensate for multi-path fading in wireless applications. In this work, for better system performance, we apply the soft output and the soft feedback structure as well as the soft decision channel decoding. Moreover, to improve packet error rate (PER) and bit error rate (BER), we search for the optimal scaling factor of the transfer function in the output layer of the MLP/BP neural networks and add small random disturbances to the training data. As compared with the conventional MLP/BP-based DFEs and the soft output MLP/BP-based DFEs, the proposed MLP/BP-based soft DFEs under multi-path fading channels can improve over 3-0.6 dB at PER=10-1 and over 3.3-0.8 dB at BER=10-3.

  • Performance Analysis of Polynomial Cancellation Coding for OFDM Systems over Time-Varying Rayleigh Fading Channels

    Abdullah S. ALARAIMI  Takeshi HASHIMOTO  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    471-477

    Polynomial cancellation coding (PCC) was proposed to mitigate the sever inter-carrier-interference (ICI) in an orthogonal frequency division multiplexing (OFDM) system caused by frequency offset. In this paper, we consider the effectiveness of PCC under time-variant multi-path Rayleigh fading analytically and by simulations. We first consider an analytical expression of the signal-to-interference plus noise power ratio (SINR) and then derive an approximation of the bit-error-rate (BER) of the OFDM-PCC system under the assumption that ICI is well approximated by a white Gaussian noise. Since the bandwidth efficiency of OFDM-PCC is half of that of normal OFDM, we compare the BER performance of the scheme with the normal OFDM system of the same bit-rate when low, medium, and high level modulations are used. Our results show that OFDM-PCC performs well even for high modulation level under time-varying multi-path fading.

  • Approximate Expression of BER Performance in DS-CDMA Systems over Multi-Path Fading Channels

    Fumihito SASAMORI  Shiro HANDA  Fumiaki MAEHARA  Fumio TAKAHATA  Shinjiro OSHITA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2523-2528

    The transmission quality in mobile wireless communication systems is affected by not only AWGN but also multi-path fading. Particularly, the Doppler frequency, the delay spread and the Rician factor have a great influence upon the quality over fading channels. This letter proposes the approximate equation for easily calculating the BER in DS-CDMA systems over multi-path fading channels. The validity of the approximate equation is confirmed from the fact that the BER calculated by the equation coincides with that by the computer simulation.

  • Proposal of Grouping Adaptive Modulation Method for Burst Mode OFDM Transmission System

    Yuanrun TENG  Tomotaka NAGAOSA  Kazuo MORI  Hideo KOBAYASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    257-265

    This paper proposes an Orthogonal Frequency Division Multiplexing system with Grouping Adaptive Modulation method (GAM-OFDM). The salient feature of the proposed system is to enable the reduction of required transmission bits for adaptive modulation information (AMI) that is required in the demodulation process at the receiver. This paper also proposes an efficient AMI transmission method for the GAM-OFDM system to enable the efficient transmission of AMI bits by using only two preamble symbols, and the Multi-Carrier Spectrum Spreading (MC-SS) technique to achieve the excellent performance of AMI transmission even under severe multi-path fading environments. This paper presents the various computer simulation results to verify the performance of proposed GAM-OFDM system.