1-2hit |
Masahiko MATSUSHITA Hiromitsu NISHIZAKI Takehito UTSURO Seiichi NAKAGAWA
This paper presents speech-driven Web retrieval models which accept spoken search topics (queries) in the NTCIR-3 Web retrieval task. The major focus of this paper is on improving speech recognition accuracy of spoken queries and then improving retrieval accuracy in speech-driven Web retrieval. We experimentally evaluated the techniques of combining outputs of multiple LVCSR models in recognition of spoken queries. As model combination techniques, we compared the SVM learning technique with conventional voting schemes such as ROVER. In addition, for investigating the effects on the retrieval performance in vocabulary size of the language model, we prepared two kinds of language models: the one's vocabulary size was 20,000, the other's one was 60,000. Then, we evaluated the differences in the recognition rates of the spoken queries and the retrieval performance. We showed that the techniques of multiple LVCSR model combination could achieve improvement both in speech recognition and retrieval accuracies in speech-driven text retrieval. Comparing with the retrieval accuracies when an LM with a 20,000/60,000 vocabulary size is used in an LVCSR system, we found that the larger the vocabulary size is, the better the retrieval accuracy is.
Seiichi NAKAGAWA Tomohiro WATANABE Hiromitsu NISHIZAKI Takehito UTSURO
This paper describes an accurate unsupervised speaker adaptation method for lecture style spontaneous speech recognition using multiple LVCSR systems. In an unsupervised speaker adaptation framework, the improvement of recognition performance by adapting acoustic models remarkably depends on the accuracy of labels such as phonemes and syllables. Therefore, extraction of the adaptation data guided by confidence measure is effective for unsupervised adaptation. In this paper, we looked for the high confidence portions based on the agreement between two LVCSR systems, adapted acoustic models using the portions attached with high accurate labels, and then improved the recognition accuracy. We applied our method to the Corpus of Spontaneous Japanese (CSJ) and the method improved the recognition rate by about 2.1% in comparison with a traditional method.