The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] multiuser(181hit)

141-160hit(181hit)

  • Adaptive MIMO Channel Estimation and Multiuser Detection Based on Kernel Iterative Inversion

    Feng LIU  Taiyi ZHANG  Jiancheng SUN  

     
    PAPER-Communication Theory and Systems

      Vol:
    E87-A No:3
      Page(s):
    649-655

    In this paper a new adaptive multi-input multi-output (MIMO) channel estimation and multiuser detection algorithm based kernel space iterative inversion is proposed. The functions of output signals are mapped from a low dimensional space to a high dimensional reproducing kernel Hilbert space. The function of the output signals is represented as a linear combination of a set of basis functions, and a Mercer kernel function is constructed by the distribution function. In order to avoid finding the function f(.) and g(.), the correlation among the output signals is calculated in the low dimension space by the kernel. Moreover, considering the practical application, the algorithm is extended to online iteration of mixture system. The computer simulation results illustrated that the new algorithm increase the performance of channel estimation, the global convergence, and the system stability.

  • FEXT Cancellation Techniques for Multiuser DMT-VDSL Systems

    Jung-Soo WOO  Gi-Hong IM  Kyu-Min KANG  

     
    PAPER-Transmission Systems and Transmission Equipment

      Vol:
    E87-B No:1
      Page(s):
    1-9

    This paper discusses far-end crosstalk (FEXT) cancellation methods for multicarrier transmission system. A system arrangement and its tap update method are proposed when FEXT cancelers and a frequency-domain equalizer (FEQ) are jointly adapted to combat channel intersymbol interference, FEXT, and other additive noise. We present mathematical formulation of minimum mean-square error (MSE) and the optimum tap coefficients for the FEXT cancelers and the FEQ when FEXT cancellation techniques are introduced for multiuser discrete multitone (DMT) based very high-speed digital subscriber line (VDSL) transmission. It is shown that FEXT cancellation enhances the achievable bit rate in FEXT-limited systems. Computer simulation and analytical results show that the performance of jointly adapted FEXT cancelers and an FEQ is better than that of separately adapted FEXT cancelers and an FEQ.

  • Improving the Capacity of Synchronous CDMA Systems with Group-Orthogonal Signature Waveforms

    Ha H. NGUYEN  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    68-78

    Synchronous Gaussian code-division multiple access (CDMA) systems employing group-orthogonal signature waveforms are proposed and analyzed. All users in the system are divided into groups of users. The signature waveforms are constructed such that all the signature waveforms in one group are orthogonal to all the signature waveforms used in all other groups. This construction of signature waveforms ensures that there is no inter-group interference (i.e., among users in different groups), but at the expense of having intra-group interference (i.e., among users in the same group). However, by choosing a small size for each group, the intra-group interference can be effectively handled by a low-complexity, optimal (or suboptimal) multiuser detector. It is shown that a significant improvement in the system capacity can be achieved by the proposed technique over the conventional one that uses signature waveforms constructed from Welch-bound-equality (WBE) sequences. In particular, it is demonstrated that, while the conventional system's error performance is very sensitive to even small amount of overload, the proposed system with an appropriate design of signature waveforms can achieve a much higher overload (up to 300% as shown in the paper) with an excellent error performance.

  • Interleaving-Based Multiple Access and Iterative Chip-by-Chip Multiuser Detection

    Wai Kong LEUNG  Lihai LIU  Li PING  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:12
      Page(s):
    3634-3637

    This letter examines a very simple iterative chip-by-chip multiuser detection strategy for spread spectrum communication systems. An interleaving-based multiple-access transmission technique is employed to facilitate detection. The proposed scheme can achieve near single-user performance in situations with very large numbers of users while maintaining very low receiver complexity.

  • A Unified Linear Multiuser Receiver for CDMA Systems

    Ha H. NGUYEN  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2792-2794

    A unified linear multiuser receiver that minimizes a weighted sum of the multiple access interference (MAI) and the background noise is introduced. The proposed receiver includes the three popular linear receivers, namely the matched-filter, the decorrelating and the minimum mean-square-error receivers as special cases. Furthermore, by tuning a single weighting factor, it is possible to improve the performance of the proposed receiver over that of any of the above mentioned linear receivers.

  • A Multistage Blind Adaptive Array Antenna for Multiuser Signal Detection in Asynchronous SS Systems

    Yukihiro KAMIYA  Kenichi OCHIAI  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2414-2424

    Adaptive arrays have been recognized as an attractive mean for overcoming multipath fading and interference rejection in the field of mobile communications. In, an adaptive array applicable to single-user spread spectrum (SS) systems has been proposed. In this system, any a priori information concerning incoming signal, even the spreading code and synchronization, is not necessary while it achieves equalizing, beamforming and despreading of a received signal, simultaneously. In this paper, we propose a multistage blind adaptive array antenna based on the above-mentioned adaptive algorithm in order to realize blind signal processing that is applicable to multi-user SS systems. Behavior and performance of the proposed multistage system are examined through computer simulations.

  • Subspace-Based Multiuser Detection under Spreading Code Mismatch

    Ann-Chen CHANG  Zhi-Feng HUANG  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E86-B No:8
      Page(s):
    2529-2531

    This Letter proposes a way of resolving spreading code mismatch in blind multiuser detection with subspace-based technique. It has been shown that subspace-based (SSB) blind multiuser detectors demonstrate the advantages of fast convergence speed and less sensitivity to spreading code mismatch over constrained mean output energy (CMOE) detectors. With a corrected scheme of the desired user code, the proposed method offers more robust capabilities over existing SSB techniques. Numerical results show that the effectiveness of the proposed technique.

  • Modified Kernel RLS-SVM Based Multiuser Detection over Multipath Channels

    Feng LIU  Taiyi ZHANG  Ruonan ZHANG  

     
    PAPER

      Vol:
    E86-A No:8
      Page(s):
    1979-1984

    For suppressing inter symbol interference, the support vector machine mutliuser detector (SVM-MUD) was adopted as a nonlinear method in direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. To solve the problems of the complexity of SVM-MUD model and the number of support vectors, based on recursive least squares support vector machine (RLS-SVM) and Riemannian geometry, a new algorithm for nonlinear multiuser detector is proposed. The algorithm introduces the forgetting factor to get the support vectors at the first training samples, then, uses Riemannian geometry to train the support vectors again and gets less improved support vectors. Simulation results illustrated that the algorithm simplifies SVM-MUD model at the cost of only a little more bit error rate and decreases the computational complexity. At the same time, the algorithm has an excellent effect on suppressing multipath interference.

  • A Modified Genetic Algorithm for Multiuser Detection in DS/CDMA Systems

    Mahrokh G. SHAYESTEH  Mohammad B. MENHAJ  Babak G. NOBARY  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2377-2388

    Multiple access interference and near-far effect cause the performance of the conventional single user detector in DS/CDMA systems to degrade. Due to high complexity of the optimum multiuser detector, suboptimal multiuser detectors with less complexity and reasonable performance have received considerable attention. In this paper we apply the classic and a new modified genetic algorithm for multiuser detection of DS/CDMA signals. It is shown that the classic genetic algorithm (GA) reaches an error floor at high signal to noise ratios (SNR) while the performance of proposed modified GA is much better than the classic one and is comparable to the optimum detector with much less complexity. The results hold true for AWGN and fading channels. We also describe another GA called as meta GA to find the optimum parameters of the modified GA. We compare the performance of proposed method with the other detectors used in CDMA.

  • Extended One-Shot Decorrelating Detector for Asynchronous DS/CDMA Systems

    Jee Woong KANG  Kwang Bok (Ed) LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    1901-1909

    We propose an extended one-shot decorrelating detector (EOS-DD) which may be viewed as a generalized double window multiuser detector (DW-MD) for asynchronous direct-sequence code-division multiple-access (DS/CDMA) systems in frequency selective fading environments. The EOS-DD extends a processing window and the received signal over an extended window is utilized for decorrelating. The effects of the window size on BER performance are investigated by numerical analysis. Analysis and simulation show that the EOS-DD is superior to the one-shot decorrelating detector (OS-DD) and finite memory length truncated decorrelating detector (FIR-DD) in terms of noise enhancement and near-far resistance. It is also shown that the EOS-DD with window size 4 can provide significantly improved performance compared to the EOS-DD with window size 2.

  • A Linearly Constrained Minor Component Analysis Approach to Blind Adaptive Multiuser Interference Suppression

    Chiao-Chan HUANG  Zhi-Feng HUANG  Ann-Chen CHANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    2024-2027

    A minor component analysis approach based on the generalized sidelobe canceler is presented to realize the blind suppression of multiple-access interference in multicarrier code division multiple access systems. With a rough user-code and timing estimations, this proposed method of less computation performs the same as minimum mean square error detectors and outperforms existing blind detectors. Simulation results illustrate the effectiveness of the blind multiuser detection.

  • Iterative Kalman Channel Estimation and Parallel Interference Cancellation for Synchronous CDMA Mobile Radio Channels

    Shu-Ming TSENG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    1961-1966

    In this paper, we propose a new multistage (iterative) structure where Kalman channel estimation and parallel interference cancellation multiuser detection are conducted in every stage (iteration). The proposed scheme avoids the complexity of the decorrelator in front of Kalman channel estimator, and has better performance than the previous scheme.

  • Optimization of Signature Waveforms and Power Allocation for Synchronous CDMA Systems under RMS Bandwidth Constraint

    Ha H. NGUYEN  Ed SHWEDYK  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    105-113

    This paper studies the optimization of signature waveforms and power allocation for synchronous code-division multiple access (CDMA) systems under the root-mean-square (RMS) bandwidth constraint. The optimization is considered for two types of receivers, namely the conventional matched filter (MF) receiver and the minimum mean-square error (MMSE) receiver. For both cases, the optimization criterion is to maximize the average signal to interference ratios (SIRs) at the receivers' outputs. For a given RMS bandwidth constraint and an arbitrary power allocation scheme, a procedure to obtain the optimal signature waveforms is provided. Based on this procedure, it is then shown that the optimal power allocation is achieved when all the received powers are equal. With the optimal power allocation, solutions for the optimal signature waveforms are presented and discussed in detail. It is also demonstrated that, compared to the previously obtained Welch-bound-equality (WBE) signature waveforms, the proposed signature waveforms can significantly improve the user performance.

  • Iterative Multiuser Detection and Decoding for Coded CDMA Systems in Frequency-Selective Fading Channels

    Hamid FARMANBAR  Masoumeh NASIRI-KENARI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:12
      Page(s):
    2807-2815

    A receiver structure, which has linear computational complexity with the number of users, is proposed for decoding multiuser information data in a convolutionally coded asynchronous DS-CDMA system in multipath fading channels. The proposed receiver architecture consists of a multiuser likelihood calculator followed by a bank of soft-input soft-output (SISO) channel decoders. Information is fed back from SISO channel decoders to multiuser likelihood calculator, and the processing proceeds in an iterative fashion analogous to the decoding of turbo codes. A simplification to the above receiver structure is given too. Simulation results demonstrate that for both receiver structures at high signal-to-noise ratios (SNR) both multiple-access interference (MAI) and inter-symbol interference (ISI) are efficiently suppressed, and single-user performance is approached. Furthermore, the proposed iterative receiver is near-far resistant.

  • Multiuser Interference Suppression in Uplink Multicarrier CDMA Systems

    Chihiro FUJITA  Yoshitaka HARA  Yukiyoshi KAMIO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:10
      Page(s):
    2256-2262

    We investigated the suppression of multiuser interference in uplink multicarrier CDMA systems using the minimum mean squared error combining (MMSEC) method. In MMSEC, many pilot symbols are required to converge the weight vectors, and if we use just a few pilot symbols, the performance cannot be improved very much. We therefore developed a method for calculating weight vectors for MMSEC that uses just a few pilot symbols. The impulse responses of all users are first estimated using the pilot symbols in the time domain and modulated by a discrete Fourier transform. Next, the correlation matrices and correlation vectors are estimated from the impulse responses and the spreading codes of all users. Finally, the weight vectors that are obtained from the correlation matrices and correlation vectors are multiplied by the received signal to suppress the multiuser interference. The results of computer simulations indicated that the bit-error-ratio performance obtained using this method was better than that obtained when using the conventional fading compensation scheme or when using conventional MMSEC with the recursive least squares algorithm.

  • A Two-Stage Approach with CMA and ILS to Blind Multiuser Detection

    Go NAKANISHI  Koji SHIBATA  Takakazu SAKAI  Atsushi NAKAGAKI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:10
      Page(s):
    2276-2279

    Multiple access interference (MAI) due to many simultaneous users is the main factor that limits the performance of DS-CDMA system. Multiuser detection is a method to avoid performance degradation due to MAI. We propose a blind multiuser detection method based on the algorithm consisting of two-stage decoding process, i.e., linearly constrained constant modulus (LCCM) and iterative least squares (ILS). The computer simulations confirmed that the algorithm is near-far resistant and that the proposed method is effective in the application to the slow fading channels.

  • Multiuser Interference Suppression Based on Complementally Transformed Minimum Variance Technique in Spread Spectrum Communications

    Ann-Chen CHANG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:8
      Page(s):
    1525-1532

    In this paper, a new adaptive method is suggested using the complementally transformed minimum variance technique for the purpose of suppressing interference in additive white and colored Gaussian noise channels. The method is based on interference suppression by way of the resulting projection weight. The multiple access causes an interference problem in the code-division multiple access systems. An efficient adaptive algorithm should be used to suppress this interference for the improvement of system performance. Analytical and simulation results show that the new adaptive method has fast convergence rate and offers significant performance gain over the conventional detector, the MMSE detector, and the linear decorrelator. Finally, multipath fading induced performance loss, which leads to error probability floor, is established for the proposed method with combining schemes and shown by computer simulation.

  • Iterative Demodulation and Channel Estimation of Orthogonal Signaling Formats in Asynchronous DS-CDMA Systems

    Erik G. STROM  Scott L. MILLER  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    442-451

    Iterative schemes for demodulating M-ary orthogonal signaling formats in direct-sequence code-division multiple access (DS-CDMA) systems are proposed and compared with the standard noncoherent matched filter receiver. Interference cancellation, i.e., (approximative) removal of the multiple access interference (MAI) by means of subtraction is studied. The considered system is similar to the uplink (reverse link) of an IS-95 system. Hence, the received signals from the concurrent users are asynchronous, and no pilot signals are available for channel estimation. A decision-directed algorithm is proposed for estimating the time-varying complex channel gains of a multipath channel. The receivers are evaluated on Rayleigh-fading channels and are shown to provide large capacity gains compared with the conventional receiver.

  • A Suboptimal Receiver for WCDMA Systems

    Joong-Hoo PARK  Yong-Up LEE  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:3
      Page(s):
    667-672

    As a new type of a linear decorrelating receiver, the Pseudo-Decorrelator was presented for asynchronous code division multiple access systems in [6]. In this paper, the concept of the Pseudo-Decorrelator is extended to derive a suboptimal receiver for WCDMA uplink systems in a Rayleigh fading environment. Starting with the analysis of the multiple access components of the decision statistics, a non-square cross-correlation matrix for each bit is obtained. This cross-correlation matrix is then inverted and the inverted matrix is applied to the decision statistics obtained from a conventional receiver. Simulation results are presented for K-user systems over a Rayleigh fading channel. The effects of the synchronization errors, such as time delays and carrier phase errors, are also examined through simulations in this paper.

  • Adaptive Detection for CDMA Multipath Signal Based on Signature Waveform Tracking

    Wei-Chiang WU  Jiang-Whai DAI  

     
    LETTER

      Vol:
    E84-A No:12
      Page(s):
    3077-3081

    This paper aims to provide a robust multiuser detection structure that adaptively tracks signature waveform distortion for CDMA multipath signals. In practical wireless environment, multipath fading leads to signature waveform distortion that severely degrades the performance of the linear multiuser detectors (LMDs) designed by exploiting the original signature waveform. In what follows, an iterative algorithm is proposed to track the signature waveform perturbation. The rationale of adaptive processing is based on the subspace method and the Minimum Variance Distortionless Response (MVDR) beamforming concept. Performance evaluation reveals that the proposed adaptive multiuser detection structure reduces the impact of signature waveform perturbation on the performance of the LMDs to a great extent. Moreover, the proposed iterative algorithm is near-far resistant since both the subspace method and the MVDR beamforming technique are energy independent to the interferers.

141-160hit(181hit)