The search functionality is under construction.

Keyword Search Result

[Keyword] nanoparticles(9hit)

1-9hit
  • Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles Open Access

    Takako MIZOGUCHI  Akihiko KANDORI  Keiji ENPUKU  

     
    PAPER

      Pubricized:
    2023/11/21
      Vol:
    E107-C No:6
      Page(s):
    183-189

    Simple and quick tests at medical clinics have become increasingly important. Magnetic sensing techniques have been developed to detect biomarkers using magnetic nanoparticles in liquid-phase assays. We developed a biomarker assay that involves using an alternating current (AC) susceptibility measurement system that uses functional magnetic particles and magnetic sensing technology. We also developed compact biomarker measuring equipment to enable quick testing. Our assay is a one-step homogeneous assay that involves simply mixing a sample with a reagent, shortening testing time and simplifying processing. Using our compact measuring equipment, which includes anisotropic magneto resistance (AMR) sensors, we conducted high-sensitivity measurements of extremely small amounts of two biomarkers (C-reactive protein, CRP and α-Fetoprotein, AFP) used for diagnosing arteriosclerosis and malignant tumors. The results indicate that an extremely small amount of CRP and AFP could be detected within 15 min, which demonstrated the possibility of a simple and quick high-sensitivity immunoassay that involves using an AC-susceptibility measurement system.

  • Effect of the State of Catalytic Nanoparticles on the Growth of Vertically Aligned Carbon Nanotubes

    Shohei SAKURAI  Mayu IIDA  Kosei OKUNUKI  Masahito KUSHIDA  

     
    PAPER

      Pubricized:
    2023/01/13
      Vol:
    E106-C No:6
      Page(s):
    208-213

    In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.

  • Emission Enhancement of Water-Soluble Porphyrin Immobilized in DNA Ultrathin Films by Localized Surface Plasmon Resonance of Gold Nanoparticles

    Hiroya MORITA  Hideki KAWAI  Kenji TAKEHARA  Naoki MATSUDA  Toshihiko NAGAMURA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    100-106

    Photophysical properties of water-soluble porphyrin were studied in aqueous solutions with/without DNA and in DNA solid films. Ultrathin films were prepared from aqueous DNA solutions by a spin-coating method on glass or on gold nanoparticles (AuNPs). Remarkable enhancement of phosphorescence was observed for porphyrin immobilized in DNA films spin-coated on AuNPs, which was attributed to the electric field enhancement and the increased radiative rate by localized surface plasmon resonance of AuNPs.

  • Correlation-Based Image Reconstruction Methods for Magnetic Particle Imaging

    Yasutoshi ISHIHARA  Tsuyoshi KUWABARA  Takumi HONMA  Yohei NAKAGAWA  

     
    PAPER-Biological Engineering

      Vol:
    E95-D No:3
      Page(s):
    872-879

    Magnetic particle imaging (MPI), in which the nonlinear interaction between internally administered magnetic nanoparticles (MNPs) and electromagnetic waves irradiated from outside of the body is utilized, has attracted attention for its potential to achieve early diagnosis of diseases such as cancer. In MPI, the local magnetic field distribution is scanned, and the magnetization signal from MNPs within a selected region is detected. However, the signal sensitivity and image resolution are degraded by interference from magnetization signals generated by MNPs outside of the selected region, mainly because of imperfections (limited gradients) in the local magnetic field distribution. Here, we propose new methods based on correlation information between the observed signal and the system function–defined as the interaction between the magnetic field distribution and the magnetizing properties of MNPs. We performed numerical analyses and found that, although the images were somewhat blurred, image artifacts could be significantly reduced and accurate images could be reconstructed without the inverse-matrix operation used in conventional image reconstruction methods.

  • Dispersion of Nanoparticles in Liquid Crystals by Sputtering and Its Effect on the Electrooptic Properties Open Access

    Hiroyuki YOSHIDA  Kosuke KAWAMOTO  Yuma TANAKA  Hitoshi KUBO  Akihiko FUJII  Masanori OZAKI  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1595-1601

    The authors describe a method to produce gold nanoparticle-dispersed liquid crystals by means of sputtering, and discuss how the presence of gold nanoparticles affect the electro-optic response of the host liquid crystal. The method exploits the fact that liquid crystals possess low vapor pressures which allow them to undergo the sputtering process, and the target material is sputtered directly on the liquid crystal in a reduced air pressure environment. The sample attained a red-brownish color after sputtering, but no aggregations were observed in the samples kept in the liquid crystal phase. Polarization optical microscopy of the sample placed in a conventional sandwich cell revealed that the phase transition behaviour is affected by the presence of the nanoparticles and that the onset of the nematic phase is observed in the form of bubble-like domains whereas in the pure sample the nematic phase appears after the passing of a phase transition front. Transmission electron microscopy confirmed the presence of single nano-sized particles that were dispersed without forming aggregates in the material. The electro-optic properties of the nanoparticle-dispersed liquid crystal was investigated by measuring the threshold voltage for a twisted-nematic cell. The threshold voltage was found to depend on the frequency of the applied rectangular voltage, and at frequencies higher than 200 Hz, the threshold became lower than the pure samples.

  • Size-, Position-, and Separation-Controlled One-Dimensional Alignment of Nanoparticles Using an Optical Near Field

    Takashi YATSUI  Wataru NOMURA  Motoichi OHTSU  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1798-1802

    Particles several tens of nanometers in size were aligned in the desired positions in a controlled manner by using capillary force interaction and suspension flow. Latex beads 40-nm in diameter were aligned linearly around a 10-µm-hole template fabricated by lithography. Further control of their position and separation was realized using colloidal gold nanoparticles by controlling the particle-substrate and particle-particle interactions using an optical near field generated on the edge of a Si wedge, in which the separation of the colloidal gold nanoparticles was controlled by the direction of polarization.

  • Observation of Size-Dependent Resonance of Near-Field Coupling between a Deposited Zn Dot and the Probe Apex during Near-Field Optical Chemical Vapor Deposition

    Jungshik LIM  Takashi YATSUI  Motoichi OHTSU  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1832-1835

    We investigated the initial stage of Zn dot growth using near-field optical chemical vapor deposition. The dependence of the rate of Zn dot deposition on dot size revealed that the deposition rate was maximal when the dot grew to a size equivalent to the probe apex diameter. Such observed size-dependent resonance was in good agreement with theoretical results for dipole-dipole coupling with a Forster field between the deposited Zn dot and the probe apex.

  • Biological Immunoassay with High Tc Superconducting Quantum Interference Device (SQUID) Magnetometer

    Keiji ENPUKU  Tadashi MINOTANI  

     
    INVITED PAPER-SQUIDs

      Vol:
    E84-C No:1
      Page(s):
    43-48

    A high Tc superconducting quantum interference device (SQUID) magnetometer system is developed for the application to biological immunoassay. In this application, magnetic nanoparticles are used as magnetic markers to perform immunoassay, i.e., to detect binding reaction between an antigen and its antibody. The antibody is labeled with γ-Fe2O3 nanoparticles, and the binding reaction can be magnetically detected by measuring the magnetic field from the nanoparticles. Design and set up of the system is described, and the sensitivity of the system is studied in terms of detectable number of the magnetic markers. At present, we can detect 4106 markers when the diameter of the marker is 50 nm. Total weight of the magnetic nanoparticles becomes 520 pg in this case. An experiment is also conducted to measure antigen-antibody reaction with the present system. It is shown that the sensitivity of the present system is 10 times better than that of the conventional method using an optical marker. A one order of magnitude improvement of sensitivity will be realized by the sophistication of the present system.

  • Topographical Change of Azopolymer Surface Induced by Optical Near-Field around Photo-Irradiated Nanoparticles

    Osamu WATANABE  Taiji IKAWA  Makoto HASEGAWA  Masaaki TSUCHIMORI  Yoshimasa KAWATA  Chikara EGAMI  Okihiro SUGIHARA  Naomichi OKAMOTO  

     
    LETTER-Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1125-1127

    Topographical changes induced by optical near-field around photo-irradiated nanoparticles were attained using a pulsed laser with a large peak power as a light source. The arrayed structure of nanoparticles was transcribed on urethane-urea azo copolymer film as dent structure. The experiments by the pulsed laser of different wavelength showed that the topographical change was caused by the light absorption. The dent diameter and the dent depth changed depending on the diameter of nanoparticles.