The search functionality is under construction.

Keyword Search Result

[Keyword] nonlinear directional coupler(7hit)

1-7hit
  • Reduction of Critical Power in All-Optical Switching with Series-Tapered Nonlinear Directional Coupler

    Guosheng PU  Tetsuya MIZUMOTO  Kenichiro ITO  Yoshiki HIGASHIDE  Yoshiyuki NAITO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:9
      Page(s):
    1315-1318

    A novel series-tapered nonlinear directional coupler is proposed to improve all-optical switching characteristics. Its switching characteristics are analyzed by using a beam propagation method based on the Galerkin's finite element technique. It is presented that the critical power of the series-tapered nonlinear directional coupler is smaller than conventional uniform symmetric and tapered nonlinear directional couplers.

  • All-Optical Switching Property of an MQW-Sandwich Nonlinear Directional Coupler with Nonlinear Losses

    Naomichi OKAMOTO  Xue Jun MENG  Okihiro SUGIHARA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:3
      Page(s):
    299-303

    We analyze all-optical switching property of a nonlinear directional coupler (NLDC) having an MQW coupling layer with both nonlinear and linear losses, and examine the effect of nonlinear losses. We use the Galerkin finite element method accompanied by a prodictor-corrector algorithm. The propagation loss along the strongly-coupled NLDC decreases with increasing nonlinear absorption coefficient due to saturation in absorption. A propagation loss of 8.18 dB or 2.38 dB in the bar state of the cross state is much smaller than the bulk loss of MQW structure which exceeds 50 dB. The nonlinear losses lengthen the coupling length and bring it close to that of a lossfree NLDC, while the linear losses shorten. It is found that the property of the cross state is greatly improved by counting the nonlinear losses: The cross-state output power and the output power ratio of two waveguides increase, and the cross state input power, that is, the switching power decreases.

  • Coupled-Mode Analysis of a Symmetric Nonlinear Directional Coupler Using a Singular Perturbation Scheme

    Kiyotoshi YASUMOTO  Naoto MAEKAWA  Hiroshi MAEDA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1771-1775

    A coupled-mode analysis of a symmetric planar nonlinear directional coupler (NLDC) is presented by using a singular perturbation scheme. The effects of linear coupling and nonlinear modification of refractive index are treated to be small perturbations, and the modal fields of isolated linear waveguides are employed as the basis of propagation model. The self-consistent first-order coupled-mode equations governing the transfer of optical power along the NLDC are obtained in analytically closed form. It is shown that tha critical power for optical switching derived from the coupled-mode equations is in close agreement with that obtained by the numerical analysis using the finite difference beam propagation mathod.

  • Numerical Analysis of Optical Switching Characteristics of Tapered Nonlinear Directional Coupler

    Guosheng PU  Tetsuya MIZUMOTO  Yoshiyasu SATO  Kenichiro ITO  Yoshiyuki NAITO  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:9
      Page(s):
    1489-1495

    A novel nonlinear directional coupler consisting of tapered and uniform waveguides with self-focusing or self-defocusing nonlinear material is proposed to improve all-optical switching characteristics. Its switching characteristics are analyzed by using a beam propagation method based on the Galerkin's finite element technique (FE-BPM), in which nonuniform sampling spacings along the transverse coordinate are adopted. It is presented that the tapered nonlinear directional coupler shows fairly distinct 'high' and 'low' states of output power with steep transition versus input power. This property is discussed in comparison with conventional nonlinear directional couplers consisting of uniform symmetric and uniform asymmetric coupled waveguides. In addition, the effects of loss on the characteristics of tapered nonlinear directional coupler are examined.

  • All-Optical Switching Phenomenon in Polydiacetylene (12, 8) Based Nonlinear Directional Coupler

    Akimasa KANEKO  Takashi KUWABARA  Tatsuo WADA  Hiroyuki SASABE  Keisuke SASAKI  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    704-708

    Optical Kerr effect were applied to all-optical switching devices in the form of nonlinear waveguide directional couplers. The nonlinear waveguide directional coupler consists of a quartz thin gap between two Corning 7059 guided layers on a pyrex substrate with ion-milled grating and organic thin film as a top layer. The vacuum-deposited polydiacetylene (12, 8) film was used as an organic nonlinear material. Power-dependent switching phenomenon in this asymmetrical nonlinear directional coupler was observed by 100 fs pulse duration of mode-locked Ti: Sapphire laser.

  • Numerical Analysis of a Symmetric Nonlinear Directional Coupler

    Hiroshi MAEDA  Kiyotoshi YASUMOTO  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:2
      Page(s):
    298-302

    The power transfer characteristics of a symmetric nonlinear directional coupler (NLDC) are analyzed rigorously using the beam propagation method based on the finite difference scheme. The NLDC consists of two linear waveguides separated by a Kerr-like nonlinear gap layer. The change of nonlinear refractive index along the coupler is precisely evaluated by making use of the second-order iteration procedure with respect to a small propagation length. For the incidence of TE0 mode of the isolated linear waveguide, the highly accurate numerical results are obtained for the behavior of power transfer, and the coupling length and critical power for optical switching. The dependencies of the coupling length and critical power on the width of the gap layer and the input power levels are discussed, compared with those predicted by the coupled-mode approximations.

  • Properties of a Strongly-Coupled Nonlinear Directional Coupler with a Lossy MQW Coupling Layer

    Xue Jun MENG  Naomichi OKAMOTO  Okihiro SUGIHARA  

     
    PAPER-Opto-Electronics

      Vol:
    E76-C No:8
      Page(s):
    1339-1344

    Properties of a strongly-coupled nonlinear directional coupler (NLDC) with a lossy MQW coupling layer is analyzed using the Galerkin finite element method accompanied by a predictor-corrector algorithm. It is shown that the propagation attenuation along the NLDC is considerably smaller than that in the bulk MQW and tends to reduce with the input power. By the presence of losses, the powers guided in two waveguides do not become a maximum and a minimum at the same propagation length, unlike the lossless coupler. The losses make the nonlinear effect weak due to the decrease in guided power, and hence the coupling length decreases and the switching power increases. The extinction ratio of the switching becomes the largest value not in the cases of nonloss and high losses but in the case of moderately high losses, although the switching power is somewhat larger than that of the lossless case.