The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] on-line NMF(3hit)

1-3hit
  • On-Line Monaural Ambience Extraction Algorithm for Multichannel Audio Upmixing System Based on Nonnegative Matrix Factorization

    Seokjin LEE  Hee-Suk PANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:1
      Page(s):
    415-420

    The development of multichannel audio systems has increased the need for multichannel contents. However, the supply of multichannel audio contents is not sufficient for advanced multichannel systems. Therefore, home entertainment manufacturers need upmixing systems, including systems that utilize monaural time-frequency domain information. Therefore, a monaural ambience extraction algorithm based on nonnegative matrix factorization (NMF) has been developed recently. Ambience signals refer to sound components that do not have obvious spatial images, e.g., wind, rain, and diffuse sound. The developed algorithm provides good upmixing performance; however, the algorithm is a batch process and therefore, it cannot be used by home audio manufacturers. In this paper, we propose an on-line monaural ambience extraction algorithm. The proposed algorithm analyzes the dominant components with an on-line NMF algorithm, and extracts the remaining sound as ambience components. Experiments were performed with artificial mixed signals and real music signals, and the performance of the proposed algorithm was compared with the performance of the conventional batch algorithm as a reference. The experimental results show that the proposed algorithm extracts the ambience components as well as the batch algorithm, despite the on-line constraints.

  • RLS-Based On-Line Sparse Nonnegative Matrix Factorization Method for Acoustic Signal Processing Systems

    Seokjin LEE  

     
    LETTER-Engineering Acoustics

      Vol:
    E96-A No:5
      Page(s):
    980-985

    Recursive least squares-based online nonnegative matrix factorization (RLS-ONMF), an NMF algorithm based on the RLS method, was developed to solve the NMF problem online. However, this method suffers from a partial-data problem. In this study, the partial-data problem is resolved by developing an improved online NMF algorithm using RLS and a sparsity constraint. The proposed method, RLS-based online sparse NMF (RLS-OSNMF), consists of two steps; an estimation step that optimizes the Euclidean NMF cost function, and a shaping step that satisfies the sparsity constraint. The proposed algorithm was evaluated with recorded speech and music data and with the RWC music database. The results show that the proposed algorithm performs better than conventional RLS-ONMF, especially during the adaptation process.

  • On-Line Nonnegative Matrix Factorization Method Using Recursive Least Squares for Acoustic Signal Processing Systems

    Seokjin LEE  Sang Ha PARK  Koeng-Mo SUNG  

     
    LETTER-Engineering Acoustics

      Vol:
    E94-A No:10
      Page(s):
    2022-2026

    In this paper, an on-line nonnegative matrix factorization (NMF) algorithm for acoustic signal processing systems is developed based on the recursive least squares (RLS) method. In order to develop the on-line NMF algorithm, we reformulate the NMF problem into multiple least squares (LS) normal equations, and solve the reformulated problems using RLS methods. In addition, we eliminate the irrelevant calculations based on the NMF model. The proposed algorithm has been evaluated with a well-known dataset used for NMF performance evaluation and with real acoustic signals; the results show that the proposed algorithm performs better than the conventional algorithm in on-line applications.