The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] one dimension(2hit)

1-2hit
  • Realization of a Four Parameter Family of Generalized One-Dimensional Contact Interactions by Three Nearby Delta Potentials with Renormalized Strengths

    Takaomi SHIGEHARA  Hiroshi MIZOGUCHI  Taketoshi MISHIMA  Taksu CHEON  

     
    PAPER

      Vol:
    E82-A No:9
      Page(s):
    1708-1713

    We propose a new method to construct a four parameter family of quantum-mechanical point interactions in one dimension, which is known as all possible self-adjoint extensions of the symmetric operator T=-Δ C0(R \{0}). It is achieved in the small distance limit of equally spaced three neighboring Dirac's δ potentials. The strength for each δ is appropriately renormalized according to the distance and it diverges, in general, in the small distance limit. The validity of our method is ensured by numerical calculations. In general cases except for usual δ, the wave function discontinuity appears around the interaction and one can observe such a tendency even at a finite distance level.

  • Global Dynamic Behaviour of a Parallel Blower System

    Hideaki OKAZAKI  Hideo NAKANO  Takehiko KAWASE  

     
    PAPER-Nonlinear Problems

      Vol:
    E78-A No:6
      Page(s):
    715-726

    A parallel blower system is quite familiar in hydraulic machine systems and quite often employed in many process industries. It is dynamically dual to the fundamental functional element of digital computer, that is, the flip-flop circuit, which was extensively studied by Moser. Although the global dynamic behaviour of such systems has significant bearing upon system operation, no substantial study reports have hitherto been presented. Extensive research concern has primarily been concentrated upon the local stability of the equilibrium point. In the paper, a piecewise linear model is used to analytically and numerically investigate its manifold global dynamic behaviour. To do this, first the Poincar map is defined as a composition boundary map, each of which is defined as the point transformation from the entry point to the end point of any trajectory on some boundary planes. It was already shown that, in some parameter region, the system exhibits the so-called chaotic states. The chaos generating process is investigated using the above Poincar map and it is shown that the map contains the contracting, stretching and folding operations which, as we often see in many cases particularly in horse shoe map, produce the chaotic states. Considering the one dimensional motions of the orbits by such Poincar map, that is, the stretching and folding operations, a one dimensional approximation of the Poincar map is introduced to more closely and exactly study manifold bifurcation processes and some illustrative bifurcation diagrams in relation to system parameters are presented. Thus it is shown how many types of bifurcations like the Hopf, period doubling, saddle node, and homoclinic bifurcations come to exist in the system.