The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] one-symbol deletion(2hit)

1-2hit
  • Maximum Order Complexity for the Minimum Changes of an M-Sequence

    Satoshi UEHARA  Tsutomu MORIUCHI  Kyoki IMAMURA  

     
    PAPER-Information Security

      Vol:
    E81-A No:11
      Page(s):
    2407-2411

    The maximum order complexity (MOC) of a sequence is a very natural generalization of the well-known linear complexity (LC) by allowing nonlinear feedback functions for the feedback shift register which generates a given sequence. It is expected that MOC is effective to reduce such an instability of LC as an extreme increase caused by the minimum changes of a periodic sequence, i. e. , one-symbol substitution, one-symbol insertion or one-symbol deletion per each period. In this paper we will give the bounds (lower and upper bounds) of MOC for the minimum changes of an m-sequence over GF(q) with period qn-1, which shows that MOC is much more natural than LC as a measure for the randomness of sequences in this case.

  • Linear Complexity of Periodic Sequences Obtained from a Sequence over GF(p) with Period pn-1 by One-Symbol Deletion

    Satoshi UEHARA  Kyoki IMAMURA  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E80-A No:6
      Page(s):
    1164-1166

    From a sequence {ai}i0 over GF(p) with period pn-1 we can obtain another periodic sequence {i}i0 with period pn-2 by deleting one symbol at the end of each period. We will give the bounds (upper bound and lower bound) of linear complexity of {i}i0 as a typical example of instability of linear complexity. Derivation of the bounds are performed by using the relation of characteristic polynomials between {ai}i0 and {ai(j)}i0={ai+j}i0, jGF(p){0}. For a binary m-sequence {ai}i0 with period 2n-1, n-1 a prime, we will give the explicit formula for the characteristic polynomial of {i}i0.