The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] optical comb(2hit)

1-2hit
  • Generation of Arbitrarily Patterned Pulse Trains in the THz Range by Spectral Synthesis of Optical Combs

    Isao MOROHASHI  Takahide SAKAMOTO  Norihiko SEKINE  Tetsuya KAWANISHI  Akifumi KASAMATSU  Iwao HOSAKO  

     
    PAPER-MWP Subsystem

      Vol:
    E98-C No:8
      Page(s):
    793-798

    We demonstrated generation of arbitrarily patterned optical pulse trains and frequency tunable terahertz (THz) pulses by spectral synthesis of optical combs generated by a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). In our approach, THz pulses were generated by photomixing of a multi-tone signal, which is elongated pulse train, and a single-tone signal. Both signals were extracted from a comb signal by using optical tunable bandpass filters. In the case of optical pulse train generation, the MZ-FCG generated comb signals with 10 GHz-spacing and 330 GHz-width, which was converted to a 2.85 ps-width pulse train by chirp compensation using a single-mode fiber. By combining the MZ-FCG with a pulse picker composed of a 40 Gbps intensity modulator, divided pulse trains and arbitrarily bit sequences were successfully generated. The single-mode light was extracted by an optical bandpass filter and the band-controlled pulse train was extracted by an optical bandpass filter. By photomixing them, a THz pulse was successfully generated. In the case of THz pulse generation, by photomixing a single-tone and a multi-tone signals extracted by tunable bandpass filters, THz pulses with a center frequency of 300 GHz was successfully generated. Furthermore, frequency tunability of the center frequency was also demonstrated.

  • Generation of Millimeter Waves with Fine Frequency Tunability Using Mach-Zehnder-Modulator-Based Flat Comb Generator

    Isao MOROHASHI  Yoshihisa IRIMAJIRI  Takahide SAKAMOTO  Tetsuya KAWANISHI  Motoaki YASUI  Iwao HOSAKO  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    192-196

    We propose a method of the precise frequency tuning in millimeter wave (MMW) generation using a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). The MZ-FCG generates a flat comb signal where the comb spacing is exactly the same as the frequency of a radio-frequency signal driving the MZ-FCG. Two modes are extracted from the comb signal by using optical filters. One of them was modulated by a phase modulator, creating precisely frequency-controllable sidebands. In the experiment, typical phase modulation was used. By photomixing of the extracted two modes using a high-speed photodiode, MMW signals with precisely frequency-controllable sidebands are generated. By changing the modulation frequency, the frequency of MMW signals can be continuously tuned. In this scheme, there are two methods for the frequency tuning of MMW signals; one is a coarse adjustment which corresponds to the comb spacing, and the other is fine tuning by the phase-modulation. It was demonstrated that the intensity fluctuation of the upper sideband of the modulated MMW signal was less than 1 dB, and the frequency fluctuation was less than the measurement resolution (300 Hz).