The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] optical logic(2hit)

1-2hit
  • 10-Gb/s Optical Buffer Memory Using a Polarization Bistable VCSEL

    Takashi MORI  Yuuki SATO  Hitoshi KAWAGUCHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E92-C No:7
      Page(s):
    957-963

    Optical buffer memory for 10-Gb/s data signal is demonstrated experimentally using a polarization bistable vertical-cavity surface-emitting laser (VCSEL). The optical buffer memory is based on an optical AND gate function and the polarization bistability of the VCSEL. Fast AND gate operation responsive to 50-ps-width optical pulses is achieved experimentally by increasing the detuning frequency between an injection light into the VCSEL and a lasing light from the VCSEL. A specified bit is extracted from the 10-Gb/s data signal by the fast AND gate operation and is stored as the polarization state of the VCSEL by the polarization bistability. The corresponding numerical simulations are also performed using two-mode rate equations taking into account the detuning frequency. The simulation results confirm the fast AND gate operation by increasing the detuning frequency as well as the experimental results.

  • Optical Logic OR-AND-NOT and NOR Gates in Waveguides Consisting of Nonlinear Material

    Yono Hadi PRAMONO  Masahiro GESHIRO  Toshiaki KITAMURA  Shinnosuke SAWA  

     
    PAPER-Optoelectronics

      Vol:
    E83-C No:11
      Page(s):
    1755-1762

    Optical logic gates for OR, AND, NOT, and NOR operations in waveguides consisting of nonlinear material are numerically investigated by means of FD-BPM (Finite Difference Beam Propagation Method). The proposed devices are designed utilizing the self-routing characteristics of nonlinear X-crossing structures when they are operated with one input beam or two. The numerical simulations show that the proposed structures can favorably be applied to optical data processing and computing as fundamental logic gates.