The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] optoelectronic device(4hit)

1-4hit
  • UTC-PD-Based Optoelectronic Components for High-Frequency and High-Speed Applications

    Satoshi KODAMA  Hiroshi ITO  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    429-435

    The uni-traveling-carrier photodiode (UTC-PD) is an innovative PD that has a unique operation mode in which only electrons act as the active carriers, resulting in ultrafast response and high electrical output power at the same time. This paper describes the features of the UTC-PD and its excellent performance. In addition, UTC-PD-based optoelectronic devices integrated with various elements, such as passive and active devices, are presented. These devices are promising for various applications, such as millimeter- and submillimeter-wave generation up to the terahertz range and ultrafast optical signal processing at data rates of up to 320 Gbit/s.

  • Ti-Diffused Optical Waveguide with Thin LiNbO3 Structure for High-Speed and Low-Drive-Voltage Modulator

    Jungo KONDO  Kenji AOKI  Tetsuya EJIRI  Yuichi IWATA  Akira HAMAJIMA  Osamu MITOMI  Makoto MINAKATA  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E89-B No:12
      Page(s):
    3428-3429

    We examined a Ti-diffused optical waveguide formed on a thin X-cut LiNbO3 substrate for a lower-drive-voltage modulator. Under the single-mode condition, optical mode-size decreases with LiNbO3 substrate thickness below 10 µm. A thin-sheet LiNbO3 modulator could achieve a low-drive-voltage of 1.3 V with a bandwidth of 15 GHz by adopting a narrow electrode-gap.

  • Scalability Issues in Optical Networks

    Peter OHLEN  Eilert BERGLIND  Lars THYLEN  

     
    INVITED PAPER-Photonic Networking

      Vol:
    E82-B No:2
      Page(s):
    231-238

    Since the inception of optical networking, a goal has been to create an all-optical network. The rapid breakthrough for WDM in point to point links has brought this prospect considerably closer, however, at the same time, questions regarding the scalability of the all-optical network remain. In this paper, we review our recent research in this area, partly performed within the European Union project METON (METropolitan Optical Network), and discuss the all-optical approach and different optoelectronic alternatives, mainly of the 2R (reamplify and reshape) type.

  • Scalability Issues in Optical Networks

    Peter OHLEN  Eilert BERGLIND  Lars THYLEN  

     
    INVITED PAPER-Photonic Networking

      Vol:
    E82-C No:2
      Page(s):
    179-186

    Since the inception of optical networking, a goal has been to create an all-optical network. The rapid breakthrough for WDM in point to point links has brought this prospect considerably closer, however, at the same time, questions regarding the scalability of the all-optical network remain. In this paper, we review our recent research in this area, partly performed within the European Union project METON (METropolitan Optical Network), and discuss the all-optical approach and different optoelectronic alternatives, mainly of the 2R (reamplify and reshape) type.