The search functionality is under construction.

Keyword Search Result

[Keyword] ordinary differential equations(4hit)

1-4hit
  • Learning Dynamic Systems Using Gaussian Process Regression with Analytic Ordinary Differential Equations as Prior Information

    Shengbing TANG  Kenji FUJIMOTO  Ichiro MARUTA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/01
      Vol:
    E104-D No:9
      Page(s):
    1440-1449

    Recently the data-driven learning of dynamic systems has become a promising approach because no physical knowledge is needed. Pure machine learning approaches such as Gaussian process regression (GPR) learns a dynamic model from data, with all physical knowledge about the system discarded. This goes from one extreme, namely methods based on optimizing parametric physical models derived from physical laws, to the other. GPR has high flexibility and is able to model any dynamics as long as they are locally smooth, but can not generalize well to unexplored areas with little or no training data. The analytic physical model derived under assumptions is an abstract approximation of the true system, but has global generalization ability. Hence the optimal learning strategy is to combine GPR with the analytic physical model. This paper proposes a method to learn dynamic systems using GPR with analytic ordinary differential equations (ODEs) as prior information. The one-time-step integration of analytic ODEs is used as the mean function of the Gaussian process prior. The total parameters to be trained include physical parameters of analytic ODEs and parameters of GPR. A novel method is proposed to simultaneously learn all parameters, which is realized by the fully Bayesian GPR and more promising to learn an optimal model. The standard Gaussian process regression, the ODE method and the existing method in the literature are chosen as baselines to verify the benefit of the proposed method. The predictive performance is evaluated by both one-time-step prediction and long-term prediction. By simulation of the cart-pole system, it is demonstrated that the proposed method has better predictive performances.

  • Computation of Floquet Multipliers Using an Iterative Method for Variational Equations

    Yu NUREKI  Sunao MURASHIGE  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E92-A No:5
      Page(s):
    1331-1338

    This paper proposes a new method to numerically obtain Floquet multipliers which characterize stability of periodic orbits of ordinary differential equations. For sufficiently smooth periodic orbits, we can compute Floquet multipliers using some standard numerical methods with enough accuracy. However, it has been reported that these methods may produce incorrect results under some conditions. In this work, we propose a new iterative method to compute Floquet multipliers using eigenvectors of matrix solutions of the variational equations. Numerical examples show effectiveness of the proposed method.

  • Boundary Conditions for Numerical Stability Analysis of Periodic Solutions of Ordinary Differential Equations

    Sunao MURASHIGE  

     
    PAPER-Nonlinear Problems

      Vol:
    E91-A No:4
      Page(s):
    1162-1168

    This paper considers numerical methods for stability analyses of periodic solutions of ordinary differential equations. Stability of a periodic solution can be determined by the corresponding monodromy matrix and its eigenvalues. Some commonly used numerical methods can produce inaccurate results of them in some cases, for example, near bifurcation points or when one of the eigenvalues is very large or very small. This work proposes a numerical method using a periodic boundary condition for vector fields, which preserves a critical property of the monodromy matrix. Numerical examples demonstrate effectiveness and a drawback of this method.

  • An FPGA-Based Acceleration Method for Metabolic Simulation

    Yasunori OSANA  Tomonori FUKUSHIMA  Masato YOSHIMI  Hideharu AMANO  

     
    PAPER-Recornfigurable Systems

      Vol:
    E87-D No:8
      Page(s):
    2029-2037

    Computer simulation of cellular process is one of the most important applications in bioinformatics. Since such simulators need huge computational resources, many biologists must use expensive PC/WS clusters. ReCSiP is an FPGA-based, reconfigurable accelerator which aims to realize economical high-performance simulation environment on desktop computers. It can exploit fine-grain parallelism in the target applications by small hardware modules in the FPGA which work in parallel manner. As the first step to implement a simulator of cellular process on ReCSiP, a solver to perform a basic simulation of metabolism was implemented. The throughput of the solver was about 29 times faster than the software on Intel's PentiumIII operating at 1.13 GHz.