The search functionality is under construction.

Keyword Search Result

[Keyword] orthogonal space-time block code (OSTBC)(2hit)

1-2hit
  • Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications

    Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2023/04/17
      Vol:
    E106-B No:10
      Page(s):
    1024-1033

    Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.

  • Symbol Error Probability for M-Ary Signals in Stacy Fading Channels

    Youngpil SONG  Hyundong SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:3
      Page(s):
    973-979

    In this paper, we derive the exact average symbol error probability (SEP) of M-ary phase-shift keying and quadrature amplitude modulation signals over Stacy fading channels. The Stacy fading is modelled by a three-parameter generalized gamma or physically α-µ fading distribution, spanning a wide range of small-scale fading such as Rayleigh, Nakagami-m, and Weibull fading. The average SEP is generally expressed in terms of (generalized) Fox's H-functions, which particularizes to the previously known results for some special cases. We further analyze the diversity order achieved by orthogonal space-time block codes in multiple-input multiple-output (MIMO) Stacy fading channels.