The search functionality is under construction.

Author Search Result

[Author] Yuyuan CHANG(8hit)

1-8hit
  • Performance Analysis of the Extended Low Complexity User Scheduling Algorithm over Up-Link Multi-User MIMO OFDMA Systems

    Junyi WANG  Yuyuan CHANG  Chuyu ZHENG  Kiyomichi ARAKI  ZhongZhao ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    327-329

    The low complexity tree-structure based user scheduling algorithm is extended into up-link MLD-based multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing access (OFDMA) wireless systems. The system sum capacity is maximized by careful user selection on a defined tree structure. The calculation load is reduced by selecting the M most possible best branches and sampling in frequency dimension. The performances of the proposed scheduling algorithm are analyzed within three kinds of OFDMA systems and compared with conventional throughput-based algorithm. Both the theoretical analysis and simulation results show that the proposed algorithm obtains better performance with much low complexity.

  • Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications

    Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2023/04/17
      Vol:
    E106-B No:10
      Page(s):
    1024-1033

    Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.

  • Device-to-Device Communications Employing Fog Nodes Using Parallel and Serial Interference Cancelers

    Binu SHRESTHA  Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    223-231

    Device-to-device (D2D) communication allows user terminals to directly communicate with each other without the need for any base stations (BSs). Since the D2D communication underlaying a cellular system shares frequency channels with BSs, co-channel interference may occur. Successive interference cancellation (SIC), which is also called the serial interference canceler, detects and subtracts user signals from received signals in descending order of received power, can cope with the above interference and has already been applied to fog nodes that manage communications among machine-to-machine (M2M) devices besides direct communications with BSs. When differences among received power levels of user signals are negligible, however, SIC cannot work well and thus causes degradation in bit error rate (BER) performance. To solve such a problem, this paper proposes to apply parallel interference cancellation (PIC), which can simultaneously detect both desired and interfering signals under the maximum likelihood criterion and can maintain good BER performance even when power level differences among users are small. When channel coding is employed, however, SIC can be superior to PIC in terms of BER under some channel conditions. Considering the superiority, this paper also proposes to select the proper cancellation scheme and modulation and coding scheme (MCS) that can maximize the throughput of D2D under a constraint of BER, in which the canceler selection is referred to as adaptive interference cancellation. Computer simulations show that PIC outperforms SIC under almost all channel conditions and thus the adaptive selection from PIC and SIC can achieve a marginal gain over PIC, while PIC can achieve 10% higher average system throughput than that of SIC. As for transmission delay time, it is demonstrated that the adaptive selection and PIC can shorten the delay time more than any other schemes, although the fog node causes the delay time of 1ms at least.

  • Metric-Combining Multiuser Detection Using Replica Cancellation with RTS and Enhanced CTS for High-Reliable and Low-Latency Wireless Communications

    Hideya SO  Kazuhiko FUKAWA  Hayato SOYA  Yuyuan CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1441-1453

    In unlicensed spectrum, wireless communications employing carrier sense multiple access with collision avoidance (CSMA/CA) suffer from longer transmission delay time as the number of user terminals (UTs) increases, because packet collisions are more likely to occur. To cope with this problem, this paper proposes a new multiuser detection (MUD) scheme that uses both request-to-send (RTS) and enhanced clear-to-send (eCTS) for high-reliable and low-latency wireless communications. As in conventional MUD scheme, the metric-combining MUD (MC-MUD) calculates log likelihood functions called metrics and accumulates the metrics for the maximum likelihood detection (MLD). To avoid increasing the number of states for MLD, MC-MUD forces the relevant UTs to retransmit their packets until all the collided packets are correctly detected, which requires a kind of central control and reduces the system throughput. To overcome these drawbacks, the proposed scheme, which is referred to as cancelling MC-MUD (CMC-MUD), deletes replicas of some of the collided packets from the received signals, once the packets are correctly detected during the retransmission. This cancellation enables new UTs to transmit their packets and then performs MLD without increasing the number of states, which improves the system throughput without increasing the complexity. In addition, the proposed scheme adopts RTS and eCTS. One UT that suffers from packet collision transmits RTS before the retransmission. Then, the corresponding access point (AP) transmits eCTS including addresses of the other UTs, which have experienced the same packet collision. To reproduce the same packet collision, these other UTs transmit their packets once they receive the eCTS. Computer simulations under one AP conditions evaluate an average carrier-to-interference ratio (CIR) range in which the proposed scheme is effective, and clarify that the transmission delay time of the proposed scheme is shorter than that of the conventional schemes. In two APs environments that can cause the hidden terminal problem, it is demonstrated that the proposed scheme achieves shorter transmission delay times than the conventional scheme with RTS and conventional CTS.

  • Versatile Radio Channel Sounder for Double Directional and Multi-link MIMO Channel Measurements at 11 GHz

    Yohei KONISHI  Yuyuan CHANG  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    994-1004

    This paper presents a $24 imes24$ MIMO channel sounder that has been developed based on a scalable fully parallel MIMO architecture. It can be flexibly configured with 3 sub-transmitters and 3 sub-receivers, each of which consists of 8 RF ports. This flexibility allows the measurement for both purposes of double directional and multi-link MIMO channel measurements. Implementation issues related to the multi-link operation on the fully parallel architecture were successfully solved by appropriate system design and applying several calibration techniques. The performance of the developed system was validated by extensive test experiments. Finally, a multi-link channel measurement example in an indoor environment was presented demonstrating the capability of the proposed system.

  • A Low Complexity Tree-Structure Based User Scheduling Algorithm for Up-Link Multi-User MIMO Systems

    Junyi WANG  Kiyomichi ARAKI  Zhongzhao ZHANG  Yuyuan CHANG  Houtao ZHU  Tsuyoshi KASHIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1415-1423

    The paper describes a low complexity tree-structure based user scheduling algorithm in an up-link transmission of MLD-based multi-user multiple-input multiple-output (MIMO) wireless systems. An M-branch selection algorithm, which selects M most-possible best branches at each step, is proposed to maximize the whole system sum-rate capacity. To achieve the maximum capacity in multi-user MIMO systems, antennas configuration and user selection are preformed simultaneously. Then according to the selected number of antennas for each user, different transmission schemes are also adopted. Both the theoretical analysis and simulation results show that the proposed algorithms obtain near optimal performance with far low complexity than the full search procedure.

  • Simplified Capacity-Based User Scheduling Algorithm for Multiuser MIMO Systems with Block Diagonalization Open Access

    Yuyuan CHANG  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2837-2846

    In multiple-input multiple-output (MIMO) systems, the multiuser MIMO (MU-MIMO) systems have the potential to provide higher channel capacity owing to multiuser and spatial diversity. Block diagonalization (BD) is one of the techniques to realize MU-MIMO systems, where multiuser interference can be completely cancelled and therefore several users can be supported simultaneously. When the number of multiantenna users is larger than the number of simultaneously receiving users, it is necessary to select the users that maximize the system capacity. However, computation complexity becomes prohibitive, especially when the number of multiantenna users is large. Thus simplified user scheduling algorithms are necessary for reducing the complexity of computation. This paper proposes a simplified capacity-based user scheduling algorithm, based on analysis of the capacity-based user selection criterion. We find a new criterion that is simplified by using the properties of Gram-Schmidt orthogonalization (GSO). In simulation results, the proposed algorithm provides higher sum rate capacity than the conventional simplified norm-based algorithm; and when signal-to-noise power ratio (SNR) is high, it provides performance similar to that of the conventional simplified capacity-based algorithm, which still requires high complexity. Fairness of the users is also taken into account. With the proportionally fair (PF) criterion, the proposed algorithm provides better performance (sum rate capacity or fairness of the users) than the conventional algorithms. Simulation results also shows that the proposed algorithm has lower complexity of computation than the conventional algorithms.

  • Simplified Block Diagonalization for Multiuser MIMO Systems with Gram-Schmidt Orthogonalization

    Yuyuan CHANG  Kiyomichi ARAKI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E94-A No:11
      Page(s):
    2263-2270

    In multiuser multiple-input multiple-output (MU-MIMO) wireless downlink systems, block diagonalization (BD) is a technique, where the transmit precoding matrix of each user is designed such that its subspace lies in the null space of all the other remaining users, so that multiuser interference (MUI) is completely canceled. In low signal to noise power ratio (SNR) or low signal to interference plus noise power ratio (SINR) environments, regularized BD, that lets some MUI remain and maximizes the sum rate capacity of the BD MIMO channel, was also proposed. One of the problems of both the approaches is high complexity of computation due to a lot of singular value decomposition (SVD) processes. In this paper we propose new BD techniques utilizing QR decomposition (QRD) which can be practically achieved by Gram-Schmidt orthogonalization (GSO) with lower complexity compared to the conventional method employing SVD. We can show that the performance of the proposed approaches is close to the conventional approaches, while the proposed approaches have much lower complexity.