The search functionality is under construction.

Author Search Result

[Author] Tsuyoshi KASHIMA(4hit)

1-4hit
  • Controlling Network Topology in Forming Bluetooth Scatternet

    Hongyuan CHEN  T.V.L.N. SIVAKUMAR  Leping HUANG  Tsuyoshi KASHIMA  

     
    PAPER-Network

      Vol:
    E88-B No:3
      Page(s):
    943-949

    Topology of a network greatly affects the network performance. Depending on the purpose of a network, a specific topology may perform much better than any other topologies. Since the ad hoc networks are formed for a specific purpose, determining, and constructing the network topology based on the application requirements will enhance system performance. This paper proposes Bluetooth scatternet forming protocol in which the network topology is determined by three parameters. The parameters affecting the topology are the number of maximum slaves in a piconet, the number of maximum piconets that a gateway Bluetooth device can service, and the number of loops needed in the formed scatternet. These parameters can be read from a script file prior to the network formation. This process of reading the important parameters from the file would give users freedom in determining the network topology. The proposed protocol also includes a role negotiation process to accommodate different capabilities of the participating devices. The negotiation process of the protocol allows the resource-limited nodes to participate in the network. Different types of scatternet topologies like star, mesh, ring and line can be formed by specifying the parameters. This paper also discusses theoretical information necessary for calculating network topologies in detail. The protocol is verified with help of simulations, and implementations using commercially available Bluetooth devices. The detailed results are also presented in this paper.

  • A Low Complexity Tree-Structure Based User Scheduling Algorithm for Up-Link Multi-User MIMO Systems

    Junyi WANG  Kiyomichi ARAKI  Zhongzhao ZHANG  Yuyuan CHANG  Houtao ZHU  Tsuyoshi KASHIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1415-1423

    The paper describes a low complexity tree-structure based user scheduling algorithm in an up-link transmission of MLD-based multi-user multiple-input multiple-output (MIMO) wireless systems. An M-branch selection algorithm, which selects M most-possible best branches at each step, is proposed to maximize the whole system sum-rate capacity. To achieve the maximum capacity in multi-user MIMO systems, antennas configuration and user selection are preformed simultaneously. Then according to the selected number of antennas for each user, different transmission schemes are also adopted. Both the theoretical analysis and simulation results show that the proposed algorithms obtain near optimal performance with far low complexity than the full search procedure.

  • Adaptive MAP Detection via the EM Algorithm for LDPC-Coded MIMO-OFDM Mobile Communications Open Access

    Tsuyoshi KASHIMA  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    312-322

    This paper proposes an iterative maximum a posteriori probability (MAP) receiver for multiple-input-multiple-output (MIMO) and orthogonal frequency-division multiplexing (OFDM) mobile communications. For exploiting the space, time, and frequency diversity, the low-density parity-check code (LDPC) is used as a channel coding with a built-in interleaver. The receiver employs the expectation maximization (EM) algorithm so as to perform the MAP symbol detection with reasonable computational complexity. The minimum mean square error (MMSE), recursive least squares (RLS), and least mean square (LMS) algorithms are theoretically derived for the channel estimation within this framework. Furthermore, the proposed receiver performs a new scheme called backward symbol detection (BSD), in which the signal detection uses the channel impulse response that is estimated one OFDM symbol later. The advantage of BSD, which is explained from the viewpoint of the message passing algorithm, is that BSD can exploit information on the both precedent and subsequent OFDM symbols, similarly to RLS with smoothing and removing (SR-RLS) [25]. In comparison with SR-RLS, BSD reduces the complexity at the cost of packet error rate (PER) performance. Computer simulations show that the receiver employing RLS for the channel estimation outperforms the ones employing MMSE or LMS, and that BSD can improve the PER performance of the ones employing RLS or LMS.

  • MIMO System with Relative Phase Difference Time-Shift Modulation for Rician Fading Environment

    Kenichi KOBAYASHI  Takao SOMEYA  Tomoaki OHTSUKI  Sigit P.W. JAROT  Tsuyoshi KASHIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    459-465

    Multiple-Input Multiple-Output (MIMO) systems that realize high-speed data transmission with multiple antennas at both transmitter and receiver are drawing much attention. In line-of sight (LOS) environments, the performance of MIMO systems depends largely on the difference of the phase difference of direct paths from transmit antennas to each receive antenna. When the phase difference of direct paths are close to each other, the spatial division multiplexing (SDM) channels are not orthogonal to each other so signal detection becomes difficult. In this paper, we propose a MIMO system with relative phase difference time-shift modulation (RPDTM) in Rician fading environments. The proposed scheme transmits independent signals from each antenna at each time slot where the relative phase difference between signal constellations used by transmit antennas varies in a pre-determined pattern. This transmission virtually changes the phase difference of direct paths from transmit antennas to each receive antenna without lowering data rate and without knowledge of the channels. In addition, forward error correction coding (ECC) is applied to exploit the time slots where the receiver can detect the signals easily to improve the detection performance. If there are time slots where the receiver can separate the received signal, the receiver can decode the data by using the time slots and the correlation between data. From the results of computer simulation, we show that MIMO system with RPDTM can achieve the better bit error rate (BER) than the conventional MIMO system. We also show that the MIMO system with RPDTM is effective by about Rician factor K = 10 dB.