1-2hit |
Sihyoung LEE Sunil CHO Yong Man RO
The active shape model (ASM) has been widely adopted by automated bone segmentation approaches for radiographic images. In radiographic images of the distal radius, multiple edges are often observed in the near vicinity of the bone, typically caused by the presence of thin soft tissue. The presence of multiple edges decreases the segmentation accuracy when segmenting the distal radius using ASM. In this paper, we propose an enhanced distal radius segmentation method that makes use of a modified version of ASM, reducing the number of segmentation errors. To mitigate segmentation errors, the proposed method emphasizes the presence of the bone edge and downplays the presence of a soft tissue edge by making use of Dual energy X-ray absorptiometry (DXA). To verify the effectiveness of the proposed segmentation method, experiments were performed with 30 distal radius patient images. For the images used, compared to ASM-based segmentation, the proposed method improves the segmentation accuracy with 47.4% (from 0.974 mm to 0.512 mm).
Supaporn KIATTISIN Kosin CHAMNONGTHAI
Bone Mineral Density (BMD) is an indicator of osteoporosis that is an increasingly serious disease, particularly for the elderly. To calculate BMD, we need to measure the volume of the femur in a noninvasive way. In this paper, we propose a noninvasive bone volume measurement method using x-ray attenuation on radiography and medical knowledge. The absolute thickness at one reference pixel and the relative thickness at all pixels of the bone in the x-ray image are used to calculate the volume and the BMD. First, the absolute bone thickness of one particular pixel is estimated by the known geometric shape of a specific bone part as medical knowledge. The relative bone thicknesses of all pixels are then calculated by x-ray attenuation of each pixel. Finally, given the absolute bone thickness of the reference pixel, the absolute bone thickness of all pixels is mapped. To evaluate the performance of the proposed method, experiments on 300 subjects were performed. We found that the method provides good estimations of real BMD values of femur bone. Estimates shows a high linear correlation of 0.96 between the volume Bone Mineral Density (vBMD) of CT-SCAN and computed vBMD (all P<0.001). The BMD results reveal 3.23% difference in volume from the BMD of CT-SCAN.