1-1hit |
This paper proposes an enhanced model of Random Projection Outlyingness (RPO) for unsupervised outlier detection. When datasets have multiple modalities, the RPOs have frequent detection errors. The proposed model deals with this problem via unsupervised clustering and a local score weighting. The experimental results demonstrate that the proposed model outperforms RPO and is comparable with other existing unsupervised models on benchmark datasets, in terms of in terms of Area Under the Curves (AUCs) of Receiver Operating Characteristic (ROC).