The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] packet dropping(3hit)

1-3hit
  • A Compensatory Packet Dropping Routine for Proportional Loss Rate Differentiation

    Hyoup-Sang YOON  Bong-Jin YUM  

     
    PAPER-Internet

      Vol:
    E90-B No:10
      Page(s):
    2865-2873

    Service differentiation is one of the key issues in the current Internet. In this paper, we focus on a recent proposal for proportional loss rate differentiation which employs a single FIFO queue, an AQM algorithm for computing the packet drop probability, and a counter-based packet dropping routine for achieving the intended proportional loss rate differentiation among classes. It is first shown that, when the target dropping probability of a class is large, the counter-based packet dropping routine may yield a significant amount of error between the target and measured drop probabilities for the class, and subsequently, fails to maintain the loss rate ratios between classes as intended. To avoid this problem, a new compensatory packet dropping routine is developed in this paper. Then, a series of simulation experiments are conducted using the ns-2 simulator to assess the performances of the two dropping routines under various congestion conditions and quality spacings between classes. The simulation results show that, unlike the counter-based dropping routine, the proposed compensatory dropping routine is effective in keeping the loss rate ratios between classes closely on target regardless of the degree of congestion and quality spacing between classes, while the two dropping routines perform similarly in terms of throughput and queueing delay in the bottleneck link. In addition, such robustness of the proposed routine is achieved without any additional control parameter or computational effort compared to the counter-based routine.

  • Combinatorial Effects of Timer Control and Backoff Algorithms on Bulk Data Transfer over Two-State Markovian Channels

    Katsumi SAKAKIBARA  Takashi GONDA  Jiro YAMAKITA  

     
    LETTER-Fundamental Theories

      Vol:
    E87-B No:1
      Page(s):
    165-170

    We analytically investigate combinatorial effects of timer control and backoff algorithms on performance of bulk data transfer over two-state Markovian packet error channels. Numerical results for throughput, energy efficiency, and the probabilities of packet loss and loss of bulk data indicate that linear backoff algorithms outperform binary exponential ones as a whole when they are employed at the logical link sublayer with timer control.

  • Performance Analysis of Channel Segregation in Cellular Environments with PRMA

    Mario FRULLONE  Guido RIVA  Paolo GRAZIOSO  Claudia CARCIOFI  

     
    PAPER

      Vol:
    E78-A No:7
      Page(s):
    822-830

    Packet Reservation Multiple Access (PRMA) is emerging as a possible multiple access scheme for the forth-coming Personal Communication systems, due to its inherent flexibility and to its capability to exploit silence periods to perform a statistical multiplexing of traffic sources, often characterised by a high burstiness. On the other hand, the current trend in reducing cell sizes and the more complex traffic scenarios pose major planning problems, which are best coped with by adaptive allocation schemes. The identification of adaptive schemes suitable to operate on a shorter time scale, which is typical of packetised information, disclose a number of problems which are addressed in this paper. A viable solution is provided by a well-known self-adaptive assignment method (Channel Segregation), originally developed for FDMA systems, provided it is conveniently adapted for PRMA operation. Simulations show good performance, provided that values of some system variables are correctly chosen. These results encourage further studies in order to refine adaptive methods suitable for cellular, packet switched personal communications systems.