The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] parallel and distributed processing(3hit)

1-3hit
  • Parallel Image Convolution Processing with Replicas in a Network of Workstations

    Masayoshi ARITSUGI  Hiroki FUKATSU  Yoshinari KANAMORI  

     
    PAPER-Database

      Vol:
    E88-D No:6
      Page(s):
    1199-1209

    Data accessed by many sites are replicated in distributed environments for performance and availability. In this paper, replication schemes are examined in parallel image convolution processing. This paper presents a system architecture that we have developed with CORBA (Common Object Request Broker Architecture) for the processing. Employing CORBA enables us to make use of a cluster of workstations, each of which has a different level of computing power. The paper also describes a parallel and distributed image convolution processing model using replicas stored in a network of workstations, and reports some experimental results showing that our analytical model can agree with practical situations.

  • An Algorithm for Node-Disjoint Paths in Pancake Graphs

    Yasuto SUZUKI  Keiichi KANEKO  

     
    PAPER-Algorithms

      Vol:
    E86-D No:3
      Page(s):
    610-615

    For any pair of distinct nodes in an n-pancake graph, we give an algorithm for construction of n-1 internally disjoint paths connecting the nodes in the time complexity of polynomial order of n. The length of each path obtained and the time complexity of the algorithm are estimated theoretically and verified by computer simulation.

  • An Algorithm for Node-to-Set Disjoint Paths Problem in Rotator Graphs

    Keiichi KANEKO  Yasuto SUZUKI  

     
    PAPER-Algorithms

      Vol:
    E84-D No:9
      Page(s):
    1155-1163

    In this paper, we give an algorithm for the node-to-set disjoint paths problem in rotator graphs with its evaluation results. The algorithm is based on recursion and it is divided into cases according to the distribution of destination nodes in classes into which all the nodes in a rotator graph are categorized. The sum of the length of paths obtained and the time complexity of the algorithm are estimated and verified by computer simulation.