The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] parameter sharing(2hit)

1-2hit
  • SDChannelNets: Extremely Small and Efficient Convolutional Neural Networks

    JianNan ZHANG  JiJun ZHOU  JianFeng WU  ShengYing YANG  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2019/09/10
      Vol:
    E102-D No:12
      Page(s):
    2646-2650

    Convolutional neural networks (CNNS) have a strong ability to understand and judge images. However, the enormous parameters and computation of CNNS have limited its application in resource-limited devices. In this letter, we used the idea of parameter sharing and dense connection to compress the parameters in the convolution kernel channel direction, thus greatly reducing the number of model parameters. On this basis, we designed Shared and Dense Channel-wise Convolutional Networks (SDChannelNets), mainly composed of Depth-wise Separable SD-Channel-wise Convolution layer. The advantage of SDChannelNets is that the number of model parameters is greatly reduced without or with little loss of accuracy. We also introduced a hyperparameter that can effectively balance the number of parameters and the accuracy of a model. We evaluated the model proposed by us through two popular image recognition tasks (CIFAR-10 and CIFAR-100). The results showed that SDChannelNets had similar accuracy to other CNNs, but the number of parameters was greatly reduced.

  • Parameter Sharing in Mixture of Factor Analyzers for Speaker Identification

    Hiroyoshi YAMAMOTO  Yoshihiko NANKAKU  Chiyomi MIYAJIMA  Keiichi TOKUDA  Tadashi KITAMURA  

     
    PAPER-Feature Extraction and Acoustic Medelings

      Vol:
    E88-D No:3
      Page(s):
    418-424

    This paper investigates the parameter tying structures of a mixture of factor analyzers (MFA) and discriminative training of MFA for speaker identification. The parameters of factor loading matrices or diagonal matrices are shared in different mixtures of MFA. Then, minimum classification error (MCE) training is applied to the MFA parameters to enhance the discrimination ability. The result of a text-independent speaker identification experiment shows that MFA outperforms the conventional Gaussian mixture model (GMM) with diagonal or full covariance matrices and achieves the best performance when sharing the diagonal matrices, resulting in a relative gain of 26% over the GMM with diagonal covariance matrices. The improvement is more significant especially in sparse training data condition. The recognition performance is further improved by MCE training with an additional gain of 3% error reduction.