The search functionality is under construction.

Keyword Search Result

[Keyword] peak power reduction(5hit)

1-5hit
  • A Fast Clock Scheduling for Peak Power Reduction in LSI

    Yosuke TAKAHASHI  Yukihide KOHIRA  Atsushi TAKAHASHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:12
      Page(s):
    3803-3811

    The reduction of the peak power consumption of LSI is required to reduce the instability of gate operation, the delay increase, the noise, and etc. It is possible to reduce the peak power consumption by clock scheduling because it controls the switching timings of registers and combinational logic elements. In this paper, we propose a fast peak power wave estimation method for clock scheduling and fast clock scheduling methods for the peak power reduction. In experiments, it is shown that the peak power wave estimated by the proposed method in a few seconds is highly correlated with the peak power wave obtained by HSPICE simulation in several days. By using the proposed peak power wave estimation method, proposed clock scheduling methods find clock schedules that greatly reduce the peak power consumption in a few minutes.

  • A Peak Power Reduction Method with Adaptive Inversion of Clustered Parity-Carriers in BCH-Coded OFDM Systems

    Osamu MUTA  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:5
      Page(s):
    1454-1462

    In this paper, we propose a simple peak power reduction (PPR) method based on adaptive inversion of parity-check block of codeword in BCH-coded OFDM system. In the proposed method, the entire parity-check block of the codeword is adaptively inversed by multiplying weighting factors (WFs) so as to minimize PAPR of the OFDM signal, symbol-by-symbol. At the receiver, these WFs are estimated based on the property of BCH decoding. When the primitive BCH code with single error correction such as (31,26) code is used, to estimate the WFs, the proposed method employs a significant bit protection method which assigns a significant bit to the best subcarrier selected among all possible subcarriers. With computer simulation, when (31,26), (31,21) and (32,21) BCH codes are employed, PAPR of the OFDM signal at the CCDF (Complementary Cumulative Distribution Function) of 10-4 is reduced by about 1.9, 2.5 and 2.5 dB by applying the PPR method, while achieving the BER performance comparable to the case with the perfect WF estimation in exponentially decaying 12-path Rayleigh fading condition.

  • A Practical Approach for Coded OFDM with Partial Transmit Sequence

    Tomoyuki MANDAI  Ikuo OKA  Marc P.C. FOSSORIER  Shingo ATA  Chikato FUJIWARA  

     
    LETTER

      Vol:
    E87-B No:5
      Page(s):
    1273-1275

    Orthogonal frequency division multiplexing (OFDM) is a possible candidate for the modulation used in mobile multimedia communications because of its robustness to fading and flexibility of transmission rate. Partial transmit sequence (PTS) is an effective technique for reducing the peak power of OFDM signals by means of phase rotation. In PTS, side information (SI) is transmitted to correct the effects of the phase rotation. We propose a new method based on rotationally invariant trellis coded modulation for coded OFDM with PTS. In this method, no SI is required and the few information bits affected by the phase rotation are not used as data. (They are regarded as dummy bits). It is shown that the proposed method yields better bit error rate (BER) performance than other methods using side information under the condition of almost the same transmission rate.

  • Peak Power Reduction Technique for Subcarrier Transmit Power Control Applied OFDM Systems

    Yuuhei HASHIMOTO  Seiichi SAMPEI  Norihiko MORINAGA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2207-2210

    A peak power reduction technique is proposed for subcarrier transmit power control applied orthogonal frequency division multiplexing (OFDM) system. In the proposed system, carrier-holes are created by applying a partial non-power allocation (PNPA) technique in which no transmit power is allocated to subcarriers with lower received Eb/N0, and the amplitude and phase adjusted peak reduction subcarrier (PRS) is iteratively inserted in the non-power allocated subcarrier so as to suppress peak power. Computer simulation confirms that the proposed scheme can reduce peak power by 3.6 dB while keeping the same information bit-rate with conventional subcarrier transmit power control applied OFDM systems.

  • A Peak Reduction Scheme Based on Control Signal Insertion for Multi-Carrier Mobile Communication Systems

    Shigeru TOMISATO  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    1910-1916

    This paper proposes a new signal peak power reduction technique, Peak Reduction based on Control Signal Insertion (PRCSI), for broadband mobile communications based on multi-channel signaling schemes. PRCSI reduces the peak power with a peak control signal that is generated symbol-by-symbol; no signal band expansion is incurred because the peak control signal is inserted into the transmission signal band. PRCSI can achieve 4 dB peak power reduction for 8-carrier signaling, while the Eb/N0 value required to achieve 10-3 average BER is 1 dB larger with PRCSI than without it. This BER performance degradation can effectively be compensated by the proper use of Trellis coding. The proposed technique is applied to OFDM transmission systems with large carrier number. The proposed technique can achieve 3-dB peak power ratio for 128-carrier OFDM signals with less than 1-dB performance degradation at the BER of 10-3.