The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] people counting(3hit)

1-3hit
  • Indoor Crowd Estimation Scheme Using the Number of Wi-Fi Probe Requests under MAC Address Randomization

    Yuki FURUYA  Hiromu ASAHINA  Masashi YOSHIDA  Iwao SASASE  

     
    PAPER-Information Network

      Pubricized:
    2021/06/18
      Vol:
    E104-D No:9
      Page(s):
    1420-1426

    As smartphones have become widespread in the past decade, Wi-Fi signal-based crowd estimation schemes are receiving increased attention. These estimation schemes count the number of unique MAC addresses in Wi-Fi signals, hereafter called probe requests (PRs), instead of counting the number of people. However, these estimation schemes have low accuracy of crowd estimation under MAC address randomization that replaces a unique MAC address with various dummy MAC addresses. To solve this problem, in this paper, we propose an indoor crowd estimation scheme using the number of PRs under MAC address randomization. The main idea of the proposed scheme is to leverage the fact that the number of PRs per a unit of time changes in proportion to the number of smartphones. Since a smartphone tends to send a constant number of PRs per a unit of time, the proposed scheme can estimate the accurate number of smartphones. Various experiment results show that the proposed scheme reduces estimation error by at most 75% compared to the conventional Wi-Fi signal-based crowd estimation scheme in an indoor environment.

  • Real-Time Counting People in Crowded Areas by Using Local Empirical Templates and Density Ratios

    Dao-Huu HUNG  Gee-Sern HSU  Sheng-Luen CHUNG  Hideo SAITO  

     
    PAPER-Recognition

      Vol:
    E95-D No:7
      Page(s):
    1791-1803

    In this paper, a fast and automated method of counting pedestrians in crowded areas is proposed along with three contributions. We firstly propose Local Empirical Templates (LET), which are able to outline the foregrounds, typically made by single pedestrians in a scene. LET are extracted by clustering foregrounds of single pedestrians with similar features in silhouettes. This process is done automatically for unknown scenes. Secondly, comparing the size of group foreground made by a group of pedestrians to that of appropriate LET captured in the same image patch with the group foreground produces the density ratio. Because of the local scale normalization between sizes, the density ratio appears to have a bound closely related to the number of pedestrians who induce the group foreground. Finally, to extract the bounds of density ratios for groups of different number of pedestrians, we propose a 3D human models based simulation in which camera viewpoints and pedestrians' proximity are easily manipulated. We collect hundreds of typical occluded-people patterns with distinct degrees of human proximity and under a variety of camera viewpoints. Distributions of density ratios with respect to the number of pedestrians are built based on the computed density ratios of these patterns for extracting density ratio bounds. The simulation is performed in the offline learning phase to extract the bounds from the distributions, which are used to count pedestrians in online settings. We reveal that the bounds seem to be invariant to camera viewpoints and humans' proximity. The performance of our proposed method is evaluated with our collected videos and PETS 2009's datasets. For our collected videos with the resolution of 320 × 240, our method runs in real-time with good accuracy and frame rate of around 30 fps, and consumes a small amount of computing resources. For PETS 2009's datasets, our proposed method achieves competitive results with other methods tested on the same datasets [1],[2].

  • Pedestrian Detection for Counting Applications Using a Top-View Camera

    Xue YUAN  Xue-Ye WEI  Yong-Duan SONG  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:6
      Page(s):
    1269-1277

    This paper presents a pedestrian detection framework using a top-view camera. The paper contains two novel contributions for the pedestrian detection task: 1. Using shape context method to estimate the pedestrian directions and normalizing the pedestrian regions. 2. Based on the locations of the extracted head candidates, system chooses the most adaptive classifier from several classifiers automatically. Our proposed methods may solve the difficulties on top-view pedestrian detection field. Experimental was performed on video sequences with different illumination and crowed conditions, the experimental results demonstrate the efficiency of our algorithm.