1-2hit |
Marat ZHANIKEEV Yoshiaki TANAKA
In NGN standards, End Host, also referred to as Terminal Equipment (TE), holds an important place in end-to-end path performance. However, most researchers neglect TE performance when considering performance of end-to-end paths. As far as the authors' knowledge goes, no previous study has proposed a model for TE performance. This paper proposes a method for measuring performance of TE and model extraction based on measurement data. The measurement was made possible with the use of a special NPU (Network Processing Unit) implemented as a programmable NIC. Along with the probing itself, a framework for removing the skew between the NPU and OS is developed in this paper. The multidimensional analysis includes method of probing, packet size and background traffic volume, and studies their effect on TE performance. A method for extracting a generic TE model is proposed. The outcome of this research can be used for modelling TE in simulations and in modelling end-to-end performance when considering QoS in NGN.
Roger ACKERLEY Anne ELVIDGE Tony INGHAM John SHEPHERDSON
The design and engineering of new network intelligence platforms to accommodate the ever-changing and growing demands of customers, presents rich market opportunities and challenges tempered by concerns arising from the problematic experiences of similar system and network developments. As the telecommunications industry evolves, customers are increasingly coming to expect the perception of instantaneous access to service providers together with transparency to network failures. System performance dictates that response times need to be minimised, sufficient redundant capacity installed in case of failure and controls embedded within the design to manage the exceptional situations (such as media stimulated events) that continually threaten network integrity. Network design based on a 'top-down,' 'end-to-end' methodology plays a fundamental role in delivering solutions that meet customers' performance needs. It is necessary to consider service scenario mixes, service demand, physical network topology, signalling message flows, the mapping of functional entities to physical components, and routing as part of the network design process to ensure that performance requirements are met. The use of 'what-if' design tools is particularly relevant as part of this process. A challenging task faces the System Designer with the often conflicting goals of good performance and provision of service flexibility.