1-2hit |
This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.
Periodic interference frequently affects the measurement of small signals and causes problems in clinical diagnostics. Adaptive filters can be used as potential tools for cancelling such interference. However, when the interference has a frequency fluctuation, the ideal adaptive-filter coefficients for cancelling the interference also fluctuate. When the adaptation property of the algorithm is slow compared with the frequency fluctuation, the interference-cancelling performance is degraded. However, if the adaptation is too quick, the performance is degraded owing to the target signal. To overcome this problem, we propose an adaptive filter that suppresses the fluctuation of the ideal coefficients by utilizing a $rac{pi}{2}$ phase-delay device. This method assumes a frequency response that characterizes the transmission path from the interference source to the main input signal to be sufficiently smooth. In the numerical examples, the proposed method exhibits good performance in the presence of a frequency fluctuation when the forgetting factor is large. Moreover, we show that the proposed method reduces the calculation cost.