The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] personal communication systems(3hit)

1-3hit
  • Fast Restoration Support of CCS (Common Channel Signaling) Protocol in ATM Based FPLMTS Network

    Sung-Won LEE  Dong-Ho CHO  Yeong-Jin KIM  Sun-Bae LIM  

     
    PAPER-Communication protocol

      Vol:
    E80-B No:10
      Page(s):
    1472-1481

    In this paper, we consider conventional signaling link fault tolerance and error correction mechanisms to provide reliable services of mobile multimedia telecommunication network based on ATM (Asynchronous Transfer Mode) technology. Also, we propose an efficient signaling protocol interworking architecture and a reliable distributed interworking network architecture between SS7 based FPLMTS and ATM networks. Besides, we evaluate the performance of proposed method through computer simulation. According to the results, proposed signaling architecture shows efficient and fast fault restoration characteristics than conventional MTP-3/3b based network. Functional signaling protocol stack and network architecture of proposed fast rerouting mechanism provide reliable and efficient restoration performance in view of interworking between SS7 based FPLMTS and ATM networks.

  • Call Routing and Data Model for Inter-Network Roaming in PCS

    Shigefusa SUZUKI  Takao NAKANISHI  

     
    PAPER-Network architecture, signaling and protocols for PCS

      Vol:
    E79-B No:9
      Page(s):
    1371-1379

    Personal communication systems (PCS) have more signalling traffic than conventional fixed networks and require large-scale databases to manage users' profiles, which are sets of data items, such as the location the user is currently visiting and the user's authentication key, necessary for a PCS user to be provided with PCS services. This paper focuses on inter-network roaming in PCS environments. In designing a PCS supporting roaming service, it is essential to avoid increased signalling traffic and data searching time in the database. We first identify the appropriate domains for three routing schemes-Direction Routing, Redirection Routing, and Look-ahead Routing-from the viewpoints of the number of signals for inter-network roaming and roaming probability. We do this for two kinds of PCS database network architecture, Home Location Register (HLR) and Visitor Location Register (VLR), and show that Look-ahead Routing is the best scheme for the HLR network architecture (considering the number of signals for intra-network and inter-network database access) and that in the VLR network architecture, the decreasing of the roaming probability expands domains for which Redirection Routing is appropriate. We also propose a generic PCS data model that inter-network roaming interfaces can use to search effectively for a user's profile. The data model clarifies the contents of a set of data items which share certain characteristics, data items that the contents compose, and the relationships (data structures) between sets of data items. The model is based on the X. 500 series recommendations, which are applied for an Intelligent Network. We also propose a data structure between sets of data items using the directory information tree and show the ASN. 1 notations of the data model.

  • Performance Evaluation of Handoff Schemes in Personal Communication Systems

    Ahmed ABUTALEB  Victor O.K. LI  

     
    INVITED PAPER

      Vol:
    E78-A No:7
      Page(s):
    773-784

    In this paper, we evaluate the performance of handoff schemes in microcellular personal communication systems (PCS) which cater to both pedestrian and vehicular users. Various performance parameters, including blocking of new calls,channel utilization, handoff blocking and call termination probabilities for each user type are evaluated. We study different queuing disciplines for handoff calls and their impact on system performance. We also study the tradeoff in handoff blocking and call termination probabilities between user types as the handoff traffic carried by the system from each user type is varied.