The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] phase error(22hit)

21-22hit(22hit)

  • Frequency Offset Estimation Using the Peak Phase Error Detection for Burst Data Transmission

    Hyoung Kyu SONG  

     
    LETTER-Mobile Communication

      Vol:
    E82-B No:4
      Page(s):
    660-663

    The frequency offset estimation is used to correct any frequency error of the local reference oscillator. In this letter, a frequency offset estimation algorithm utilizing the peak phase error detection and frequency offset smoother is proposed for burst data transmission. The basic idea of frequency offset estimator is to use a curve fitting method. The proposed peak phase error detection avoids a large phase error which yields a bad value for FOE. In order to control the AFC, frequency offset smoother by a simple filter is used. Simulation results show that the proposed algorithm is adequate for frequency offset estimation of burst data transmission.

  • An Extremely Accurate Quadrature Modulator IC Using Phase Detection Method and Its Application to Multilevel QAM Systems

    Nobuaki IMAI  Hiroyuki KIKUCHI  

     
    PAPER

      Vol:
    E75-C No:6
      Page(s):
    674-682

    An extremely accurate and very wide-band quadrature modulator IC fabricated on a single chip using bipolar technology is presented. The characteristics of this quadrature modulator IC are much superior to conventional ones (modulation phase error and deviation from quadrature is about 1/10), and this IC is applicable to high modulation schemes such as 256 QAM. In this circuit, the phase difference between local signals input to each of two balanced modulators is detected by a phase detector, and a variable phase shifter in the local port is controlled automatically by the detected signals. This, along with the use of a wide-band variable phase shifter, enables the phase difference between the local signals input to the balanced modulators to be adaptively controlled to 90 degrees in wide frequency bands. In addition, a design method for the balanced modulators to obtain small modulation phase error is described. Based on this design method, a highly accurate quadrature modulator IC was fabricated, in which two balanced modulators, the phase detector, and the variable phase shifter were integrated on a single chip. Phase deviation from quadrature in the local signals was reduced to less than 0.3 degrees in the wide frequency bands of more tham 60 MHz. The modulation phase error of the balanced modulators wes less than 0.2 degrees at 140 MHz, and less than 2.5 degrees at up to 1.3 GHz.

21-22hit(22hit)