The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] phase separation(4hit)

1-4hit
  • Formation of Polymer Wall Structure on Plastic Substrate by Transfer Method of Fluororesin for Flexible Liquid Crystal Displays

    Seiya KAWAMORITA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    888-891

    In this paper, we examined the transfer method of fluororesin as the novel formation method of polymer wall in order to realize the lattice-shaped polymer walls without patterned light irradiation using photomask. We clarified that the transfer method was effective for formation of polymer wall structure on flexible substrate.

  • Formation of Polymer Walls by Monomer Aggregation Control Utilizing Substrate-Surface Wettability for Flexible LCDs Open Access

    Seiya KAWAMORITA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    1005-1011

    We examined the novel aggregation control of the LC and monomer during formation of the polymer walls from a LC/monomer mixture in order to suppress the presence of the residual monomers and polymer networks in the pixel areas. The method is utilization of the differing wettabilities among LC and monomer molecules on a substrate surface. We patterned a substrate surface with a fluororesin and a polyimide film, and promoted phase separation of the LC and monomer by cooling process. This resulted in the LC and monomer aggregates primarily existing in the pixel areas and non-pixel areas, respectively. Moreover, the polymer-walls structure which was formed in this method partitioned into individual pixels in a lattice region and prevented the LC from flowing. This polymer-walls formation technique will be useful for developing high-quality flexible LCDs.

  • Improvement of Display Performance for PSVA-LCD Based on Novel RM Monomer with Short Alkyl Spacer Open Access

    Remi KAWAKAMI  Satoshi NIIYAMA  Yutaka NAKAGAWA  Yuji SODA  

     
    INVITED PAPER

      Vol:
    E94-C No:11
      Page(s):
    1749-1754

    We proposed a novel UV curable reactive mesogen monomer for VA-LCD with Polymer-Sustained (Stabilized) Vertical Alignment (PSVA) which shows a high display performance. The experimental results reveal that the PSVA by the novel-monomer realizes less image sticking and better response time.

  • Role of Dislocation in InGaN/GaN Quantum Wells Grown on Bulk GaN and Sapphire Substrates

    Tomoya SUGAHARA  Shiro SAKAI  

     
    INVITED PAPER

      Vol:
    E83-C No:4
      Page(s):
    598-604

    Dislocation properties in InGaN/GaN Quantum Wells and GaN grown on bulk GaN and sapphire substrates by metalorganic chemical vapor deposition (MOCVD) were characterized using cathodoluminescnece (CL), transmission electron microscopy (TEM), atomic force microscopy (AFM) and photoluminescence (PL). It was clearly demonstrated that dislocations act as nonradiative recombination centers in both n-type (undoped and Si-doped) GaN and InGaN layers. Furthermore the very short-minority carrier diffusion length was a key parameter to explain the high light emission efficiency in GaN-based light emitting diodes (LEDs) prepared on sapphire substrates. On the other side band-tail states were detected in the heteroepitaxial InGaN layers only by temperature dependence PL measurement. Additionally InGaN phase separation, which consists of few micron domains, has been produced under growth conditions which favors the spiral growth. These results indicate that the dislocations in the InGaN layers act as triggering centers for the InGaN phase separation which cause both a compositional fluctuation and the formation of few micron phase separated domains. The homoepitaxial InGaN layers showed however quite normal behaviors for all characterizations.