The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] photoconductive film(2hit)

1-2hit
  • Ultrahigh-Sensitivity Pickup Tube Using 35-µm-Thick HARP Photoconductive Film

    Yuji OHKAWA  Kazunori MIYAKAWA  Tomoki MATSUBARA  Kenji KIKUCHI  Shirou SUZUKI  Misao KUBOTA  Norifumi EGAMI  Akira KOBAYASHI  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E92-C No:6
      Page(s):
    894-897

    A high-sensitivity pickup tube using HARP (high-gain avalanche rushing amorphous photoconductor) photoconductive film, which makes use of the avalanche multiplication phenomenon, has been studied for making a high-sensitivity television camera. The avalanche multiplication factor, i.e., sensitivity, was increased by thickening the film. A 35-µm-thick HARP film, which was more sensitive than the previous 25-µm-thick film with an avalanche multiplication factor of about 600, and a 2/3rd-inch pickup tube using the film were developed. Measurements on the pickup tube demonstrated that it had an avalanche multiplication factor of about 1000, low lag, and high resolution. Moreover, image defects caused by shooting of intense spot lights were investigated, and it was found that exposing the film to UV light before operation and controlling the temperature of the film during operation could suppress the defects.

  • An Amperometric Sensor for Chemical Imaging Using Photoconductive Organic Film

    Takuya HAGIWARA  Masataka TAKAZAWA  Hidekazu UCHIDA  Yuki HASEGAWA  Tamaki YAJI  

     
    PAPER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1863-1868

    We have developed an amperometric sensor employing a photoconductive organic thin film that enables the measurement of the two-dimensional distribution of redox current on a sensor surface. The sensor simply consists of photoconductive film and transparent electrode. A focused light beam through the transparent electrode excites the photoconductive film that leads to detect local redox current at the beam position. Intensity of the redox current depends on local concentration of redox species of solution on the sensor. We investigated several materials for the photoconductive film and found a suitable structure is Cu-phthalocyanine doped polyvinylcarbazole film/indium tin oxide/glass substrate. Compared with a conventional two-dimensional chemical sensor, our newly developed sensor can be prepared by lower cost fabrication methods without complex semiconductor processes. The sensor showed a good signal dependence on the concentration of K3Fe(CN)6/K4Fe(CN)6 in an aqueous solution at 15.4 nA/dec at a constant bias voltage of 0.8 V. We measured the two-dimensional distribution of ions in an agarose gel of 2 mm thickness. The result showed a photograph of the diffusion process of redox species. We also discuss the discrimination of redox species like voltammetry.