The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] photosynthesis(2hit)

1-2hit
  • Analyzing Bioelectric Potential Response of Plants Related to Photosynthesis under Blinking Irradiation

    Ki ANDO  Yuki HASEGAWA  Hitoshi MAEKAWA  Teruaki KATSUBE  

     
    PAPER-Bioelectronics

      Vol:
    E91-C No:12
      Page(s):
    1905-1909

    The bioelectric potential of plants is generated by ion concentration difference between inside and outside of plant cells. It has been reported that the bioelectric potential of leaves changes at the beginning of steady irradiation and intensity of the potential response increases with the photosynthetic rate. Although it has been reported that photosynthesis is accelerated by blinking irradiation, the potential response under the blinking irradiation have not been fully clarified. In this study, we measured the bioelectric potential and CO2 consumption of plants under various types of the blinking irradiation. This result showed that the potential response under the blinking irradiation has various behaviors and intensity of the response related to photosynthetic rate. We conclude that our method is suitable for monitoring the biological activity of plants such as photosynthesis.

  • Photosynthetic Activity Measurement of Plants Using Photoacoustic Spectroscopy Combined with Confocal Scanning Microscopy

    Hideo KOJIMA  Masahiro TAWATA  Teruhiro TAKABE  Hiroshi SHIMOYAMA  

     
    PAPER-Optics and Bio Electronics

      Vol:
    E83-C No:7
      Page(s):
    1142-1148

    Photoacoustic spectroscopy (PAS) has recently received much attention especially for plant photosynthesis research, because this technique is capable of performing non-destructive measurement without any pre-treatment of specimens. So far we have developed a PAS system equipped with an open photoacoustic cell (OPC), which allows in situ and in vivo measurements of plant photosynthesis of intact undetached leaves. In this study, we have measured photosynthesis reaction using OPC and developed a Confocal Scanning Photoacoustic Microscopy (CSPAM) system, in which PAS is combined with confocal scanning laser microscopy. The system allows simultaneous measurement of acoustic signal and another signal such as fluorescence, and also gives two- and three- dimensional intensity distributions of these signals, thereby giving two- and three- dimensional information about photosynthetic activity of plants.