The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] private networks(4hit)

1-4hit
  • NAPT-Based Mobility Service for Software Defined Networks Open Access

    Shimin SUN  Li HAN  Xianshu JIN  Sunyoung HAN  

     
    INVITED PAPER

      Pubricized:
    2017/02/13
      Vol:
    E100-D No:5
      Page(s):
    932-938

    For IP-based mobile networks, efficient mobility management is vital to provision seamless online service. IP address starvation and scalability issue constrain the wide deployment of existing mobility schemes, such as Mobile IP, Proxy Mobile IP, and their derivations. Most of the studies focus on the scenario of mobility among public networks. However, most of current networks, such as home networks, sensor networks, and enterprise networks, are deployed with private networks hard to apply mobility solutions. With the rapid development, Software Defined Networking (SDN) offers the opportunity of innovation to support mobility in private network schemes. In this paper, a novel mobility management scheme is presented to support mobile node moving from public network to private network in a seamless handover procedure. The centralized control manner and flexible flow management in SDN are utilized to provide network-based mobility support with better QoS guarantee. Benefiting from SDN/OpenFlow technology, complex handover process is simplified with fewer message exchanges. Furthermore, handover efficiency can be improved in terms of delay and overhead reduction, scalability, and security. Analytical analysis and implementation results showed a better performance than mobile IP in terms of latency and throughput variation.

  • Name-Based Address Mapping for Virtual Private Networks

    Peter SURANYI  Yasushi SHINJO  Kazuhiko KATO  

     
    PAPER-Internet

      Vol:
    E92-B No:1
      Page(s):
    200-208

    IPv4 private addresses are commonly used in local area networks (LANs). With the increasing popularity of virtual private networks (VPNs), it has become common that a user connects to multiple LANs at the same time. However, private address ranges for LANs frequently overlap. In such cases, existing systems do not allow the user to access the resources on all LANs at the same time. In this paper, we propose name-based address mapping for VPNs, a novel method that allows connecting to hosts through multiple VPNs at the same time, even when the address ranges of the VPNs overlap. In name-based address mapping, rather than using the IP addresses used on the LANs (the real addresses), we assign a unique virtual address to each remote host based on its domain name. The local host uses the virtual addresses to communicate with remote hosts. We have implemented name-based address mapping for layer 3 OpenVPN connections on Linux and measured its performance. The communication overhead of our system is less than 1.5% for throughput and less than 0.2 ms for each name resolution.

  • Flexible Information Sharing and Handling System--Towards Knowledge Propagation--

    Yoshiaki SEKI  Toshihiko YAMAKAMI  Akihiro SHIMIZU  

     
    PAPER

      Vol:
    E77-B No:3
      Page(s):
    404-410

    The use of computers with private networks has accelerated the electronic storage of business information in office systems. With the rapid progress in processing capability and small sizing of the computer world, private networks are going to be more intelligent. The utilization of shared information is a key issue in modern organizations, in order to increase the productivity of white-collar workers. In the CSCW research field, it is said that informal and unstructured information is important in group work contexts but difficult to locate in a large organization. Many researchers are paying particular attention to the importance of support systems for such information. These kinds of information are called Organizational memory or Group Memory. Our research focuses on knowledge propagation with private networks in the organization. This means emphasis on the process; with which organized information or the ability to use information is circulated throughout the organization. Knowledge propagation has three issues: knowledge transmission, destination locating and source locating. To cope with these issues we developed FISH, which stands for Flexible Information Sharing and Handling system. FISH was designed to provide cooperative information sharing in a group work context and to explore knowledge propagation. FISH stores fragmental information as cards with multiple keywords and content. This paper discusses a three-layered model that describes computer supported knowledge transmission. Based on this model, three issues are discussed regarding knowledge propagation. FISH and its two-year experiment are described and knowledge propagation is explored based on the results of this experiment.

  • Throttled-Buffer Asynchronous Switch for ATM

    Kenneth J. SCHULTZ  P. Glenn GULAK  

     
    PAPER

      Vol:
    E77-B No:3
      Page(s):
    351-358

    Asynchronous Transfer Mode (ATM) shared buffer switches have numerous advantages, but have the principal disadvantage that all switch traffic must pass through the bottleneck of a single memory. To achieve the most efficient usage of this bottleneck, the shared buffer is made blockable, resulting in a switch architecture that we call "throttled-buffer", which has several advantageous properties. Shared buffer efficiency is maximized while decreasing both capacity and power requirements. Asynchronous operation is possible, whereby peak link data rates are allowed to approach the aggregate switch rate. Multicasting is also efficiently supported. The architecture and operation of this low-cost switch are described in detail.