The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] probabilistic classification(2hit)

1-2hit
  • Multiclass Probabilistic Classification for Support Vector Machines

    Ji-Sang BAE  Jong-Ok KIM  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2015/02/23
      Vol:
    E98-D No:6
      Page(s):
    1251-1255

    Support Vector Machine (SVM) is one of the most widely used classifiers to categorize observations. This classifier deterministically selects a class that has the largest score for a classification output. In this letter, we propose a multiclass probabilistic classification method that reflects the degree of confidence. We apply the proposed method to age group classification and verify the performance.

  • Superfast-Trainable Multi-Class Probabilistic Classifier by Least-Squares Posterior Fitting

    Masashi SUGIYAMA  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2690-2701

    Kernel logistic regression (KLR) is a powerful and flexible classification algorithm, which possesses an ability to provide the confidence of class prediction. However, its training--typically carried out by (quasi-)Newton methods--is rather time-consuming. In this paper, we propose an alternative probabilistic classification algorithm called Least-Squares Probabilistic Classifier (LSPC). KLR models the class-posterior probability by the log-linear combination of kernel functions and its parameters are learned by (regularized) maximum likelihood. In contrast, LSPC employs the linear combination of kernel functions and its parameters are learned by regularized least-squares fitting of the true class-posterior probability. Thanks to this linear regularized least-squares formulation, the solution of LSPC can be computed analytically just by solving a regularized system of linear equations in a class-wise manner. Thus LSPC is computationally very efficient and numerically stable. Through experiments, we show that the computation time of LSPC is faster than that of KLR by two orders of magnitude, with comparable classification accuracy.