The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] probability of error(6hit)

1-6hit
  • A New Upper Bound for Finding Defective Samples in Group Testing

    Jin-Taek SEONG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2020/02/17
      Vol:
    E103-D No:5
      Page(s):
    1164-1167

    The aim of this paper is to show an upper bound for finding defective samples in a group testing framework. To this end, we exploit minimization of Hamming weights in coding theory and define probability of error for our decoding scheme. We derive a new upper bound on the probability of error. We show that both upper and lower bounds coincide with each other at an optimal density ratio of a group matrix. We conclude that as defective rate increases, a group matrix should be sparser to find defective samples with only a small number of tests.

  • Stochastic Resonance of Signal Detection in Mono-Threshold System Using Additive and Multiplicative Noises

    Jian LIU  Youguo WANG  Qiqing ZHAI  

     
    PAPER-Noise and Vibration

      Vol:
    E99-A No:1
      Page(s):
    323-329

    The phenomenon of stochastic resonance (SR) in a mono-threshold-system-based detector (MTD) with additive background noise and multiplicative external noise is investigated. On the basis of maximum a posteriori probability (MAP) criterion, we deal with the binary signal transmission in four scenarios. The performance of the MTD is characterized by the probability of error detection, and the effects of system threshold and noise intensity on detectability are discussed in this paper. Similar to prior studies that focus on additive noises, along with increases in noise intensity, we also observe a non-monotone phenomenon in the multiplicative ways. However, unlike the case with the additive noise, optimal multiplicative noises all tend toward infinity for fixed additive noise intensities. The results of our model are potentially useful for the design of a sensor network and can help one to understand the biological mechanism of synaptic transmission.

  • Exact Error Performance Analysis of Arbitrary 2-D Modulation OFDM Systems with Carrier Frequency Offset

    Jaeyoon LEE  Dongweon YOON  Hoon YOO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1439-1442

    In an orthogonal frequency division multiplexing (OFDM) system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide a closed-form expression to evaluate the exact error probabilities of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.

  • Exact Error Probability Analysis of Arbitrary 2-D Modulation-OFDM Systems with I/Q Imbalances

    Kyongkuk CHO  Jaeyoon LEE  Dongweon YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    350-354

    In OFDM systems, in-phase and quadrature (I/Q) imbalances generated in the analog front-end introduce inter-channel interference and, consequently, error performance degradation. This letter provides an exact expression involving the two-dimensional (2-D) Gaussian Q-function for the error probability of an arbitrary 2-D modulated OFDM signal with I/Q imbalances. The effects of I/Q imbalances on the distribution of an AWGN and the error performance are analyzed.

  • Exact and General Expression for the Error Probability of Arbitrary Two-Dimensional Signaling with I/Q Amplitude and Phase Unbalances

    Jaeyoon LEE  Dongweon YOON  Kwangmin HYUN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3356-3362

    The I/Q unbalance which is generated by a non-ideal component is an inevitable physical phenomenon and leads to performance degradation when we implement a practical two-dimensional (2-D) modulation system. In this paper, we provide an exact and general expression involving the 2-D Gaussian Q-function for the SER/BER of arbitrary 2-D signaling with I/Q amplitude and phase unbalances over an additive white Gaussian noise (AWGN) channel by using the coordinate rotation and shifting technique. Through Monte Carlo simulations we verify our expression provided here for 16-star Quadrature Amplitude Modulation (QAM).

  • Further Result on the Symbol Error Probability of MPSK with I/Q Phase Unbalance

    Jaeyoon LEE  Dongweon YOON  Sang Kyu PARK  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E89-B No:5
      Page(s):
    1675-1677

    The quadrature component unbalance generated by a non-ideal component such as an imperfect 90-degree phase shifter is an inevitable physical phenomenon and leads to performance degradation in a practical coherent M-ary phase shift keying (MPSK) transceiver. In this letter, we present an exact and general expression involving the one- and two-dimensional Gaussian Q-functions for the symbol error rate (SER) of MPSK with I/Q phase unbalance over an additive white Gaussian noise (AWGN) channel. The SER expression provided here offers a convenient way to evaluate the performance of MPSK systems for various cases of practical interest.