The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] processing cost reduction method(2hit)

1-2hit
  • Convergence Analysis of Processing Cost Reduction Method of NLMS Algorithm with Correlated Gaussian Data

    Kiyoshi TAKAHASHI  Noriyoshi KUROYANAGI  

     
    PAPER-Digital Signal Processing

      Vol:
    E79-A No:7
      Page(s):
    1044-1050

    Reduction of the complexity of the NLMS algorithm has recceived attention in the area of adaptive filtering. A processing cost reduction method, in which the component of the weight vector is updated when the absolute value of the sample is greater than or equal to an arbitrary threshold level, has been proposed. The convergence analysis of the processing cost reduction method with white Gaussian data has been derived. However, a convergence analysis of this method with correlated Gaussian data, which is important for an actual application, is not studied. In this paper, we derive the convergence cheracteristics of the processing cost reduction method with correlated Gaussian data. From the analytical results, it is shown that the range of the gain constant to insure convergence is independent of the correlation of input samples. Also, it is shown that the misadjustment is independent of the correlation of input samples. Moreover, it is shown that the convergence rate is a function of the threshold level and the eigenvalues of the covariance matrix of input samples as well as the gain constant.

  • Convergence Analysis of Processing Cost Reduction Method of NLMS Algorithm

    Kiyoshi TAKAHASHI  Shinsaku MORI  

     
    PAPER

      Vol:
    E77-A No:5
      Page(s):
    825-832

    Reduction of the complexity of the NLMS algorithm has received attention in the area of adaptive filtering. A processing cost reduction method, in which the component of the weight vector is updated when the absolute value of the sample is greater than or equal to the average of the absolute values of the input samples, has been proposed. The convergence analysis of the processing cost reduction method has been derived from a low-pass filter expression. However, in this analysis the effect of the weignt vector components whose adaptations are skipped is not considered in terms of the direction of the gradient estimation vector. In this paper, we use an arbitrary value instead of the average of the absolute values of the input samples as a threshold level, and we derive the convergence characteristics of the processing cost reduction method with arbitrary threshold level for zero-mean white Gaussian samples. From the analytical results, it is shown that the range of the gain constant to insure convergence and the misadjustment are independent of the threshold level. Moreover, it is shown that the convergence rate is a function of the threshold level as well as the gain constant. When the gain constant is small, the processing cost is reduced by using a large threshold level without a large degradation of the convergence rate.