The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] raindrop size distribution(2hit)

1-2hit
  • Adaptive Determination of Maximum Diameter of Rain drops from ZDR

    Yuji OHSAKI  Kenji NAKAMURA  

     
    PAPER

      Vol:
    E79-B No:6
      Page(s):
    793-796

    A maximum diameter (Dmax) of raindrop should be assumed when rainfall rate (R) is estimates from the differential reflectivity (ZDR) and the horizontal reflectivity (ZH) measured with dual-polarization radar. If the assumed Dmax is different from actual Dmax, the estimated R contains errors. Using distrometer data, it was found that ZDR correlates with Dmax, and it was verified that when Dmax is adaptively determined by an empirical relationship between ZDR and Dmax, errors in estimated R can be reduced.

  • Rain Depolarization Characteristics Related to Rainfall Types on Ka-Band Satellite-to-Ground Path

    Yasuyuki MAEKAWA  Nion Sock CHANG  Akira MIYAZAKI  

     
    PAPER

      Vol:
    E76-B No:12
      Page(s):
    1564-1570

    Observations of rain depolarization characteristics were conducted using the CS-2 and CS-3 beacon signals (19.45GHz, circular polarization, elevation angle=49.5) during seven years of 1986-1992 at Neyagawa, Osaka. The mean cross-polar phase relative to the co-polar phase of each rainfall event is distributed in a comparatively wide range from -100 to -150. This large variation is suggested to be caused by the difference of raindrop size distribution (DSD) in addition to that of rain intensity. The effects of DSD are examined by rain attenuation statistics for specific months, together with direct measurements of raindrop diameters on the ground for several rainfall events. Compared with representative DSD models, the effects of the Joss-drizzle type with relatively small raindrops primarily appear in "Baiu (Tsuyu)" period, while the effects of the Marshall-Palmer type which represents a standard type are enhanced in "Shurin (Akisame)" period. On the other hand, the effects of the Joss-thunderstorm type with comparatively large raindrops do not indicate a very clear seasonal variation. Possible improvements of XPD performed by differential phase shifters are generally found to be lower than 10dB for the rain depolarization due to the effect of residual differential attenuation after the cancellation of differential phase shift. Such XPD improvements are, however, very sensitive to the type of DSD, and it is suggested that the improvements are at least greater than 6dB for the Joss-drizzle type, whereas they are less than 6dB for the Marshall-Palmer and Joss-thunderstorm types. The effects of the XPD improvements are thus related to rainfall types, i.e., the type of DSD, and the improvements are considerably dependent upon the seasons in which each rainfall type frequently appears.