The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] random rough surfaces(2hit)

1-2hit
  • Numerical Analysis of Detected Signal Characteristics from a Blue Laser Optical Disk Model with Random Rough Surfaces by FDTD Method

    Toshitaka KOJIMA  Takanori KAWAI  

     
    PAPER

      Vol:
    E90-C No:8
      Page(s):
    1599-1605

    In order to realize a higher density version of the conventional optical disk, shorter wavelength laser and narrower track pitch have been put to practical use. However, using narrow track pitch can cause the increase of the crosstalk from the adjacent tracks. Moreover, the use of narrow pitch and short wavelength can also give rise to the increase of deterioration of the detected signal characteristics due to the microscopic roughness of disk surface. In this paper, in order to estimate the effect of surface roughness theoretically, we try to analyze the light-beam scattering and detected signal characteristics of a blue laser optical disk model with random rough surfaces by the Finite Difference Time Domain (FDTD) method.

  • Bistatic Radar Moving Returns from Sea Surface

    Ali KHENCHAF  Olivier AIRIAU  

     
    PAPER-Rough Surface Scattering

      Vol:
    E83-C No:12
      Page(s):
    1827-1835

    A program is developed to simulate the signal received by a bistatic pulse radar for a defined scenario. The signal collected at the receiving antenna is calculated as a function of time by taking into account the vectorial aspect of the electromagnetic waves and various elements operating in the radar radiolink. The radar radiolink is designed in a modular structure for a general configuration where the transmitter, the target and the receiver are moving. Modules such as elements characterizing the antennas radiation or defining the target scattering can be inserted in accordance with the desired radar scenario. Then the developed model permits to simulate a wide range of radar scenarios where returns from targets and clutter can be individually processed and their characteristics can be investigated in time or frequency. The interest of this model is great because it permits, for a defined scenario, to generate radar data which can be used in signal processing algorithms for target detection, clutter suppression or target classification. This paper shows the implementation of the simulation program considering a concrete radar scenario. The presented scenario deals with the simulation of the sea clutter occurring in a bistatic radar radiolink over the sea surface. In this application where the sea surface is considered as the target, the electric field scattered from the sea surface is calculated by assuming that the surface is described by two independent scales of roughness.