1-1hit |
Ji Young CHUN Dowon HONG Dong Hoon LEE Ik Rae JEONG
Finding rare cases with medical data is important when hospitals or research institutes want to identify rare diseases. To extract meaningful information from a large amount of sensitive medical data, privacy-preserving data mining techniques can be used. A privacy-preserving t-repetition protocol can be used to find rare cases with distributed medical data. A privacy-preserving t-repetition protocol is to find elements which exactly t parties out of n parties have in common in their datasets without revealing their private datasets. A privacy-preserving t-repetition protocol can be used to find not only common cases with a high t but also rare cases with a low t. In 2011, Chun et al. suggested the generic set operation protocol which can be used to find t-repeated elements. In the paper, we first show that the Chun et al.'s protocol becomes infeasible for calculating t-repeated elements if the number of users is getting bigger. That is, the computational and communicational complexities of the Chun et al.'s protocol in calculating t-repeated elements grow exponentially as the number of users grows. Then, we suggest a polynomial-time protocol with respect to the number of users, which calculates t-repeated elements between users.