The search functionality is under construction.

Keyword Search Result

[Keyword] reflection and transmission(10hit)

1-10hit
  • Reflection and Transmission Characteristics of Laminated Structures Consisting a Dipole Array Sheet and a Wire Grid and Dielectric Layer

    Shinichiro YAMAMOTO  Kenichi HATAKEYAMA  Takanori TSUTAOKA  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1235-1241

    This paper proposes reflection and transmission control panels using artificially designed materials. As the artificially designed material, finite- and infinite-length metal wire array sheets are used here. Laminated structures consisting of the metal wire array sheets and dielectric material are proposed. Reflection and transmission characteristics of these structures can be controlled by changing the metal wire parameters such as wire length, spacing gaps between the wires, and the dielectric material's thickness and relative permittivity. The reflection and transmission characteristics of the laminated structures are evaluated by measurements in free space and by transmission line theory.

  • TE Plane Wave Reflection and Transmission from a One-Dimensional Random Slab – Slanted Fluctuation –

    Yasuhiko TAMURA  Junichi NAKAYAMA  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E96-C No:1
      Page(s):
    60-63

    This paper deals with reflection and transmission of a TE plane wave from a one-dimensional random slab with slanted fluctuation by means of the stochastic functional approach. By starting with a generalized representation of the random wavefield from a two-dimensional random slab, and by using a manner for slanted anisotropic fluctuation, the corresponding random wavefield representation and its statistical quantities for one-dimensional cases are newly derived. The first-order incoherent scattering cross section is numerically calculated and illustrated in figures.

  • TE Plane Wave Reflection and Transmission from a Two-Dimensional Random Slab – Slanted Fluctuation –

    Yasuhiko TAMURA  

     
    PAPER-Random Media and Rough Surfaces

      Vol:
    E95-C No:1
      Page(s):
    36-43

    This paper deals with reflection and transmission of a TE plane wave from a two-dimensional random slab with slanted fluctuation by means of the stochastic functional approach. Such slanted fluctuation of the random slab is written by a homogeneous random field having a power spectrum with a rotation angle. By starting with the previous paper [IEICE Trans. Electron., Vol. E92-C, no.1, pp.77–84, January 2009], any statistical quantities are immediately obtained even for slanted fluctuation cases. The first-order incoherent scattering cross section is numerically calculated and illustrated in figures. It is then newly found that shift and separation phenomena of the leading or enhanced peaks at four characteristic scattering angles take place in the transmission and reflection sides, respectively.

  • Analysis of Radiation from Line Source Located in Cylindrical Electromagnetic Bandgap Structures with Defects

    Vakhtang JANDIERI  Kiyotoshi YASUMOTO  Young-Ki CHO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E94-C No:8
      Page(s):
    1245-1252

    A semi-analytical approach for analyzing the electromagnetic radiation of a line source in cylindrical electromagnetic bandgap (EBG) structure is presented. The cylindrical structure is composed of circular rods periodically distributed along concentrically layered circular rings. The method uses the T-matrix of a circular rod in isolation, the reflection and transmission matrices of a cylindrical array expressed in terms of the cylindrical waves as the basis, and the generalized reflection and transmission matrices for a layered cylindrical structure. Using the proposed method, the radiated field from a line source placed inside a three-layered cylindrical EBG structure with defects is investigated. The defects are created by removing the particular circular rods from each circular ring. The structure is prominent from the viewpoint of flexible design of the directive antennas. Numerical examples demonstrate that the cylindrical EBG structures are very effective at forming and controlling the directed beam in the radiated fields.

  • Modal Analysis of Specific Microstructured Optical Fibers Using a Model of Layered Cylindrical Arrays of Circular Rods

    Vakhtang JANDIERI  Kiyotoshi YASUMOTO  Anurag SHARMA  Hansa CHAUHAN  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    17-23

    A rigorous semi-analytical approach for the scalar field in a microstructured optical fiber, which is formed of layered cylindrical arrays of circular rods symmetrically distributed on each concentric cylindrical layer, is presented. The method uses the T-matrix of a circular rod in isolation and the generalized reflection and transmission matrices of cylindrical arrays. Numerical examples of the mode index for three-layered hexagonal structure of circular air holes are demonstrated and compared with those obtained by a variational method.

  • Reflection and Transmission of a TE Plane Wave from a Two-Dimensional Random Slab --- Anisotropic Fluctuation ---

    Yasuhiko TAMURA  Kiyoshi TSUTSUMI  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E92-C No:12
      Page(s):
    1531-1534

    This paper studies reflection and transmission of a TE plane wave from a two-dimensional random slab with statistically anisotropic fluctuation by means of the stochastic functional approach. By starting with a representation of the random wavefield presented in the previous paper [IEICE Trans. Electron., vol.E92-C, no.1, pp.77-84, Jan. 2009], a solution algorithm of the multiple renormalized mass operator is newly shown even for anisotropic fluctuation. The multiple renormalized mass operator, the first-order incoherent scattering cross section and the optical theorem are numerically calculated and illustrated in figures. The relation between statistical properties and anisotropic fluctuation is discussed.

  • TE Plane Wave Reflection and Transmission from a Two-Dimensional Random Slab

    Yasuhiko TAMURA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    77-84

    This paper reexamines reflection and transmission of a TE plane wave from a two-dimensional random slab discussed in the previous paper [IEICE Trans. Electron., Vol.E79-C, no.10, pp.1327-1333, October 1996] by means of the stochastic functional approach with the multiply renormalizing approximation. A random wavefield representation is explicitly shown in terms of a Wiener-Hermite expansion. The first-order incoherent scattering cross section and the optical theorem are numerically calculated. Enhanced scattering as gentle peaks or dips on the angular distribution of the incoherent scattering is reconfirmed in the directions of reflection and backscattering, and is newly found in the directions of forward scattering and 'symmetrical forward scattering.' The mechanism of enhanced scattering is deeply discussed.

  • TM Plane Wave Reflection and Transmission from a One-Dimensional Random Slab

    Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    607-614

    This paper deals with a TM plane wave reflection and transmission from a one-dimensional random slab with stratified fluctuation by means of the stochastic functional approach. Based on a previous manner [IEICE Trans. Electron. E88-C, 4, pp.713-720, 2005], an explicit form of the random wavefield is obtained in terms of a Wiener-Hermite expansion with approximate expansion coefficients (Wiener kernels) under small fluctuation. The optical theorem and coherent reflection coefficient are illustrated in figures for several physical parameters. It is then found that the optical theorem by use of the first two or three order Wiener kernels holds with good accuracy and a shift of Brewster's angle appears in the coherent reflection.

  • Two-Dimensional Analysis of Guided Modes in a Metallic Electromagnetic Crystal Waveguide

    Hongting JIA  Kiyotoshi YASUMOTO  

     
    PAPER

      Vol:
    E89-C No:9
      Page(s):
    1291-1298

    A rigorous and simple method is proposed for analyzing guided modes of metallic electromagnetic crystal waveguides. The method is a combination of generalized reflection and transmission matrices and the mode-matching technique. Fast convergence, low computer cost, and high calculating precision are main advantages of the proposed method. This method can easily avoid the relative convergence phenomena than a classical mode-matching method, and the proposed formulation is very suitable to analyzing multilayered problems with very low computer cost. The existence of H-polarized modes in metallic electromagnetic crystal waveguides has been verified.

  • TE Plane Wave Reflection and Transmission from a One-Dimensional Random Slab

    Yasuhiko TAMURA  Junichi NAKAYAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:4
      Page(s):
    713-720

    This paper deals with a TE plane wave reflection and transmission from a one-dimensional random slab by means of the stochastic functional approach. The relative permittivity of the random slab is written by a Gaussian random field in the vertical direction with finite thickness, and is uniform in the horizontal direction with infinite extent. An explicit form of the random wavefield is obtained in terms of a Wiener-Hermite expansion with approximate expansion coefficients (Wiener kernels) under a small fluctuation case. By using the first three terms of the random wavefield representation, the optical theorem is illustrated in figures for several physical parameters. It is then found that the optical theorem holds with good accuracy.