The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] remote-sensing(2hit)

1-2hit
  • Knowledge-Based Enhancement of Low Spatial Resolution Images

    Xiao-Zheng LI  Mineichi KUDO  Jun TOYAMA  Masaru SHIMBO  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:5
      Page(s):
    457-463

    Many image-processing techniques are based on texture features or gradation features of the image. However, Landsat images are complex; they also include physical features of reflection radiation and heat radiation from land cover. In this paper, we describe a method of constructing a super-resolution image of Band 6 of the Landsat TM sensor, oriented to analysis of an agricultural area, by combining information (texture features, gradation features, physical features) from other bands. In this method, a knowledge-based hierarchical classifier is first used to identify land cover in each pixel and then the least-squares approach is applied to estimate the mean temperature of each type of land cover. By reassigning the mean temperature to each pixel, a finer spatial resolution is obtained in Band 6. Computational results show the efficiency of this method.

  • A New Self-Organization Classification Algorithm for Remote-Sensing Images

    Souichi OKA  Tomoaki OGAWA  Takayoshi ODA  Yoshiyasu TAKEFUJI  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E81-D No:1
      Page(s):
    132-136

    This paper presents a new self-organization classification algorithm for remote-sensing images. Kohonen and other scholars have proposed self-organization algorithms. Kohonen's model easily converges to the local minimum by tuning the elaborate parameters. In addition to others, S. C. Amatur and Y. Takefuji have also proposed self-organization algorithm model. In their algorithm, the maximum neuron model (winner-take-all neuron model) is used where the parameter-tuning is not needed. The algorithm is able to shorten the computation time without a burden on the parameter-tuning. However, their model has a tendency to converge to the local minimum easily. To remove these obstacles produced by the two algorithms, we have proposed a new self-organization algorithm where these two algorithms are fused such that the advantages of the two algorithms are combined. The number of required neurons is the number of pixels multiplied by the number of clusters. The algorithm is composed of two stages: in the first stage we use the maximum self-organization algorithm until the state of the system converges to the local-minimum, then, the Kohonen self-organization algorithm is used in the last stage in order to improve the solution quality by escaping from the local minimum of the first stage. We have simulated a LANDSAT-TM image data with 500 pixel 100 pixel image and 8-bit gray scaled. The results justifies all our claims to the proposed algorithm.