1-2hit |
Masahiro HIGUCHI Osamu SHIRAKAWA Hiroyuki SEKI Mamoru FUJII Tadao KASAMI
This paper presents a method for verifying safety property of a communication protocol modeled as two extended communicating finite-state machines with two unbounded FIFO channels connecting them. In this method, four types of atomic formulae specifying a condition on a machine and a condition on a sequence of messages in a channel are introduced. A human verifier describes a logical formula which expresses conditions expected to be satisfied by all reachable global states, and a verification system proves that the formula is indeed satisfied by such states (i.e. the formula is an invariant) by induction. If the invariant is never satisfied in any unsafe state, it can be concluded that the protocol it safe. To show the effectiveness of this method, a sample protocol extracted from the data transfer phase of the OSI session protocol was verified by using the verification system.
Masahiro HIGUCHI Hiroyuki SEKI Tadao KASAMI
Many practical communication protocols provide priority service as well as ordinary service. In such a protocol, the protocol machines can initiate a priority service at most of the states. This characteristic leads an extreme increment of the number of state transitions on the protocol machines and causes state space explosion in verification of safety property of the protocol. This paper describes a method of constructing a communication protocol from composition of a subprotocol for ordinary service and that for priority service. This paper also presents a sufficient condition for a composed protocol to inherit safety property from the subprotocols. By using the composition method and the sufficient condition, the decision problem for safety property of the composed protocol can be reduced to those of the subprotocols. An experimental result of verification of a part of OSI session protocol is also described. The result shows that the method can reduce the computation time for verifying safety property to about 3% against the naive way.