1-2hit |
Kevin Nathanael SANTOSO Suk-Hwan LEE Won-Joo HWANG Ki-Ryong KWON
This paper presents an information hiding method for DNA steganography with which a massive amount of data can be hidden in a noncoding strand. Our method maps the encrypted data to the DNA sequence using a numerical mapping table, before concealing it in the noncoding sequence using a secret key comprising sector length and the random number generator's seed. Our encoding algorithm is sector-based and reference dependent. Using modular arithmetic, we created a unique binary-base translation for every sector. By conducting a simulation study, we showed that our method could preserve amino acid information, extract hidden data without reference to the host DNA sequence, and detect the position of mutation error. Experimental results verified that our method produced higher data capacity than conventional methods, with a bpn (bit-per-nucleotide) value that ranged from approximately 1-2, depending on the selected sector length. Additionally, our novel method detected the positions of mutation errors by the presence of a parity base in each sector.
Masataka SUZUKI Tsutomu MATSUMOTO
We describe a scheme of secret communication over the Internet utilizing the potentiality of the TCP/IP protocol suite in a non-standard way. Except for the sender and the receiver of the secret communication it does not need any entities installed with special software. Moreover it does not require them to share any key beforehand. Such features of the scheme stem from the use of IP datagrams with spoofed source addresses and their related error messages for the Internet Control Message Protocol (ICMP) induced by artificial faults. Countermeasures against IP spoofing are deployed in various places since it is often used together with attacks such as distributed denial of service (DDoS) and SPAM mailing. Thus we examine the environment where the scheme works as an intention and also clarify the conditions to obsolete the scheme. Furthermore we estimate the amount of secretly communicated data by the scheme and storage requirements for the receivers and those for the observers who monitor the traffic to detect the very existence of such a secret communication. We also discuss various issues including the sender anonymity achieved by the scheme.