1-3hit |
Ji-Hyun SONG Hong-Sub AN Sangmin LEE
In this paper, we propose a robust speech/music classification algorithm to improve the performance of speech/music classification in the selectable mode vocoder (SMV) of 3GPP2 using deep belief networks (DBNs), which is a powerful hierarchical generative model for feature extraction and can determine the underlying discriminative characteristic of the extracted features. The six feature vectors selected from the relevant parameters of the SMV are applied to the visible layer in the proposed DBN-based method. The performance of the proposed algorithm is evaluated using the detection accuracy and error probability of speech and music for various music genres. The proposed algorithm yields better results when compared with the original SMV method and support vector machine (SVM) based method.
In this letter, we propose an efficient method to improve the performance of voiced/unvoiced (V/UV) sounds decision for the selectable mode vocoder (SMV) of 3GPP2 using the Gaussian mixture model (GMM). We first present an effective analysis of the features and the classification method adopted in the SMV. And feature vectors which are applied to the GMM are then selected from relevant parameters of the SMV for the efficient V/UV classification. The performance of the proposed algorithm are evaluated under various conditions and yield better results compared to the conventional method of the SMV.
In this letter, an acoustic environment classification algorithm based on the 3GPP2 selectable mode vocoder (SMV) is proposed for context-aware mobile phones. Classification of the acoustic environment is performed based on a Gaussian mixture model (GMM) using coding parameters of the SMV extracted directly from the encoding process of the acoustic input data in the mobile phone. Experimental results show that the proposed environment classification algorithm provides superior performance over a conventional method in various acoustic environments.